Leveraging automated machine learning for environmental data-driven genetic analysis and genomic prediction in maize hybrids

Genotype, environment, and genotype-by-environment (GxE) interactions play a critical role in shaping crop phenotypes. Here, a large-scale, multi-environment hybrid maize dataset is used to construct and validate an automated machine learning framework that integrates environmental and genomic data...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Kunhui, Yu, Tingxi, Gao, Shang, Chen, Shoukun, Li, Liang, Zhang, Xuecai, Huang, Changling, Xu, Yunbi, Wang, Jiankang, Boddupalli, Prasanna, Hearne, Sarah, Li, Xinhai, Li, Huihui
Formato: Journal Article
Lenguaje:Inglés
Publicado: Wiley-VCH Verlag 2025
Materias:
Acceso en línea:https://hdl.handle.net/10568/179136

Ejemplares similares: Leveraging automated machine learning for environmental data-driven genetic analysis and genomic prediction in maize hybrids