Bayesian divergence-based approach for genomic multitrait ordinal selection

Effective genomic selection for ordinal traits, such as disease resistance scores, is a persistent challenge in plant breeding due to the discrete, ordered nature of these phenotypes. This study presents a novel Bayesian divergence-based framework for multitrait ordinal selection, implemented in the...

Descripción completa

Detalles Bibliográficos
Autores principales: Villar-Hernández, Bartolo de Jesús, Singh, Pawan Kumar, Lozano, Nerida, Vitale, Paolo, Gerard, Guillermo Sebastián, Breseghello, Flavio, Dreisigacker, Susanne, Crossa, Jose
Formato: Journal Article
Lenguaje:Inglés
Publicado: Oxford University Press 2025
Materias:
Acceso en línea:https://hdl.handle.net/10568/179091
_version_ 1855532613641437184
author Villar-Hernández, Bartolo de Jesús
Singh, Pawan Kumar
Lozano, Nerida
Vitale, Paolo
Gerard, Guillermo Sebastián
Breseghello, Flavio
Dreisigacker, Susanne
Crossa, Jose
author_browse Breseghello, Flavio
Crossa, Jose
Dreisigacker, Susanne
Gerard, Guillermo Sebastián
Lozano, Nerida
Singh, Pawan Kumar
Villar-Hernández, Bartolo de Jesús
Vitale, Paolo
author_facet Villar-Hernández, Bartolo de Jesús
Singh, Pawan Kumar
Lozano, Nerida
Vitale, Paolo
Gerard, Guillermo Sebastián
Breseghello, Flavio
Dreisigacker, Susanne
Crossa, Jose
author_sort Villar-Hernández, Bartolo de Jesús
collection Repository of Agricultural Research Outputs (CGSpace)
description Effective genomic selection for ordinal traits, such as disease resistance scores, is a persistent challenge in plant breeding due to the discrete, ordered nature of these phenotypes. This study presents a novel Bayesian divergence-based framework for multitrait ordinal selection, implemented in the extended Multitrait Parental Selection R package (MPS-R). By leveraging decision-theoretic loss functions, including the Kullback–Leibler (KL) divergence, Bhattacharyya distance, and Hellinger distance, our approach quantifies the distance between candidate distributions and breeder-defined target distributions. Through extensive simulations under 6 scenarios combining different genetic correlation structures and heritability levels, we demonstrate the comparative performance of each loss function. KL divergence consistently yielded superior genetic gains, especially in moderate heritability settings. Additionally, random sampling validation using real wheat disease resistance data confirmed the utility of these methods in practical breeding contexts. The MPS-R package implements this methodology through user-friendly functions tailored for ordinal trait selection in breeding applications. Our results demonstrate that this toolset provides a flexible, robust, and biologically grounded framework to enhance selection efficiency in breeding programs targeting complex, multitrait ordinal phenotypes. A couple of limitations employed by the simulation scheme used on the study are also discussed.
format Journal Article
id CGSpace179091
institution CGIAR Consortium
language Inglés
publishDate 2025
publishDateRange 2025
publishDateSort 2025
publisher Oxford University Press
publisherStr Oxford University Press
record_format dspace
spelling CGSpace1790912025-12-20T02:11:38Z Bayesian divergence-based approach for genomic multitrait ordinal selection Villar-Hernández, Bartolo de Jesús Singh, Pawan Kumar Lozano, Nerida Vitale, Paolo Gerard, Guillermo Sebastián Breseghello, Flavio Dreisigacker, Susanne Crossa, Jose bayesian theory marker-assisted selection wheat breeding genomics forecasting Effective genomic selection for ordinal traits, such as disease resistance scores, is a persistent challenge in plant breeding due to the discrete, ordered nature of these phenotypes. This study presents a novel Bayesian divergence-based framework for multitrait ordinal selection, implemented in the extended Multitrait Parental Selection R package (MPS-R). By leveraging decision-theoretic loss functions, including the Kullback–Leibler (KL) divergence, Bhattacharyya distance, and Hellinger distance, our approach quantifies the distance between candidate distributions and breeder-defined target distributions. Through extensive simulations under 6 scenarios combining different genetic correlation structures and heritability levels, we demonstrate the comparative performance of each loss function. KL divergence consistently yielded superior genetic gains, especially in moderate heritability settings. Additionally, random sampling validation using real wheat disease resistance data confirmed the utility of these methods in practical breeding contexts. The MPS-R package implements this methodology through user-friendly functions tailored for ordinal trait selection in breeding applications. Our results demonstrate that this toolset provides a flexible, robust, and biologically grounded framework to enhance selection efficiency in breeding programs targeting complex, multitrait ordinal phenotypes. A couple of limitations employed by the simulation scheme used on the study are also discussed. 2025-10 2025-12-19T21:36:53Z 2025-12-19T21:36:53Z Journal Article https://hdl.handle.net/10568/179091 en Open Access application/pdf Oxford University Press Villar-Hernández, B.d.J., Singh, P., Lozano-Ramírez, N., Vitale, P., Gerard, G., Breseghello, F., Dreisigacker, S., & Crossa, J. (2025). Bayesian divergence-based approach for genomic multitrait ordinal selection. G3: Genes Genomes Genetics, 15(10). https://doi.org/10.1093/g3journal/jkaf183
spellingShingle bayesian theory
marker-assisted selection
wheat
breeding
genomics
forecasting
Villar-Hernández, Bartolo de Jesús
Singh, Pawan Kumar
Lozano, Nerida
Vitale, Paolo
Gerard, Guillermo Sebastián
Breseghello, Flavio
Dreisigacker, Susanne
Crossa, Jose
Bayesian divergence-based approach for genomic multitrait ordinal selection
title Bayesian divergence-based approach for genomic multitrait ordinal selection
title_full Bayesian divergence-based approach for genomic multitrait ordinal selection
title_fullStr Bayesian divergence-based approach for genomic multitrait ordinal selection
title_full_unstemmed Bayesian divergence-based approach for genomic multitrait ordinal selection
title_short Bayesian divergence-based approach for genomic multitrait ordinal selection
title_sort bayesian divergence based approach for genomic multitrait ordinal selection
topic bayesian theory
marker-assisted selection
wheat
breeding
genomics
forecasting
url https://hdl.handle.net/10568/179091
work_keys_str_mv AT villarhernandezbartolodejesus bayesiandivergencebasedapproachforgenomicmultitraitordinalselection
AT singhpawankumar bayesiandivergencebasedapproachforgenomicmultitraitordinalselection
AT lozanonerida bayesiandivergencebasedapproachforgenomicmultitraitordinalselection
AT vitalepaolo bayesiandivergencebasedapproachforgenomicmultitraitordinalselection
AT gerardguillermosebastian bayesiandivergencebasedapproachforgenomicmultitraitordinalselection
AT breseghelloflavio bayesiandivergencebasedapproachforgenomicmultitraitordinalselection
AT dreisigackersusanne bayesiandivergencebasedapproachforgenomicmultitraitordinalselection
AT crossajose bayesiandivergencebasedapproachforgenomicmultitraitordinalselection