A critical synthesis of remote sensing and machine learning approaches for climate hazard impact on crop yield

This review critically assesses the application of machine learning (ML) algorithms and remote sensing (RS) products in detecting and predicting climate hazards, as well as their impacts on crop yields. Using the PRISMA approach, it examines 177 studies on climate hazards and 197 on RS–ML applicatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Obahoundje, Salomon, Tilahun, Seifu A., Zemadim, Birhanu, Schmitter, Petra
Formato: Journal Article
Lenguaje:Inglés
Publicado: IOP Publishing 2025
Materias:
Acceso en línea:https://hdl.handle.net/10568/177349

Ejemplares similares: A critical synthesis of remote sensing and machine learning approaches for climate hazard impact on crop yield