Optimal anthropometric discharge criteria from treatment of wasting: Meta-analysis of individual patient data from 34 studies
Background Community-based treatment of acute malnutrition saves lives, but recovered children remain at risk of relapse postdischarge. Strategies to reduce this risk may include modification of anthropometric discharge criteria. Objectives This study aims to compare the diagnostic accuracy of anthr...
| Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
|---|---|
| Formato: | Journal Article |
| Lenguaje: | Inglés |
| Publicado: |
Elsevier
2025
|
| Materias: | |
| Acceso en línea: | https://hdl.handle.net/10568/177253 |
| _version_ | 1855519901448404992 |
|---|---|
| author | Bliznashka, Lilia Chaudhary, Sandhya Rattigan, Susan M. Isanaka, Sheila Adah, Ruth Ahmed, Tahmeed Alam, Nur Alitanou, Rodrigue Bahwere, Paluku Bailey, Jeanette Barthorp, Harriet Becquet, Renaud Belchior-Bellino, Valérie Beri, Alemayehu Berthé, Fatou Bhandari, Nita Bose, Anuradha Burza, Sakib Casademont, Cristian Cazes, Cécile Chaturvedi, Anuraag Collins, Steve Coulibaly, Issa Cuneo, C Nicholas Dansereau, Emily Daures, Maguy Diala, Udochukwu Djibo, Ali Escruela, Montserrat Faal, Abdoulie Griswold, Stacy Guesdon, Benjamin Guindo, Ousmane Hien, Jérémie Hossain, Md Iqbal Hug, Julia Iyengar, Sharad Jasper, Paul John, Collins Kangas, Suvi T. Kornetsky, Kenneth Lambebo, Abera Legese, Liya Lelijveld, Natasha Mahajan, Raman Manary, Mark Mohan, Sanjana Myatt, Mark Nabwera, Helen Nackers, Fabienne Nahar, Baitun Olufemi, Adegoke Patwari, Ashok Phelan, Kevin Rocaspana, Mercè Rogers, Beatrice Sadler, Kate Salpeteur, Cecile Sonko, Bakary Soofi, Sajid Taneja, Sunita Tripathy, Prasanta Wegner, Donna |
| author_browse | Adah, Ruth Ahmed, Tahmeed Alam, Nur Alitanou, Rodrigue Bahwere, Paluku Bailey, Jeanette Barthorp, Harriet Becquet, Renaud Belchior-Bellino, Valérie Beri, Alemayehu Berthé, Fatou Bhandari, Nita Bliznashka, Lilia Bose, Anuradha Burza, Sakib Casademont, Cristian Cazes, Cécile Chaturvedi, Anuraag Chaudhary, Sandhya Collins, Steve Coulibaly, Issa Cuneo, C Nicholas Dansereau, Emily Daures, Maguy Diala, Udochukwu Djibo, Ali Escruela, Montserrat Faal, Abdoulie Griswold, Stacy Guesdon, Benjamin Guindo, Ousmane Hien, Jérémie Hossain, Md Iqbal Hug, Julia Isanaka, Sheila Iyengar, Sharad Jasper, Paul John, Collins Kangas, Suvi T. Kornetsky, Kenneth Lambebo, Abera Legese, Liya Lelijveld, Natasha Mahajan, Raman Manary, Mark Mohan, Sanjana Myatt, Mark Nabwera, Helen Nackers, Fabienne Nahar, Baitun Olufemi, Adegoke Patwari, Ashok Phelan, Kevin Rattigan, Susan M. Rocaspana, Mercè Rogers, Beatrice Sadler, Kate Salpeteur, Cecile Sonko, Bakary Soofi, Sajid Taneja, Sunita Tripathy, Prasanta Wegner, Donna |
| author_facet | Bliznashka, Lilia Chaudhary, Sandhya Rattigan, Susan M. Isanaka, Sheila Adah, Ruth Ahmed, Tahmeed Alam, Nur Alitanou, Rodrigue Bahwere, Paluku Bailey, Jeanette Barthorp, Harriet Becquet, Renaud Belchior-Bellino, Valérie Beri, Alemayehu Berthé, Fatou Bhandari, Nita Bose, Anuradha Burza, Sakib Casademont, Cristian Cazes, Cécile Chaturvedi, Anuraag Collins, Steve Coulibaly, Issa Cuneo, C Nicholas Dansereau, Emily Daures, Maguy Diala, Udochukwu Djibo, Ali Escruela, Montserrat Faal, Abdoulie Griswold, Stacy Guesdon, Benjamin Guindo, Ousmane Hien, Jérémie Hossain, Md Iqbal Hug, Julia Iyengar, Sharad Jasper, Paul John, Collins Kangas, Suvi T. Kornetsky, Kenneth Lambebo, Abera Legese, Liya Lelijveld, Natasha Mahajan, Raman Manary, Mark Mohan, Sanjana Myatt, Mark Nabwera, Helen Nackers, Fabienne Nahar, Baitun Olufemi, Adegoke Patwari, Ashok Phelan, Kevin Rocaspana, Mercè Rogers, Beatrice Sadler, Kate Salpeteur, Cecile Sonko, Bakary Soofi, Sajid Taneja, Sunita Tripathy, Prasanta Wegner, Donna |
| author_sort | Bliznashka, Lilia |
| collection | Repository of Agricultural Research Outputs (CGSpace) |
| description | Background
Community-based treatment of acute malnutrition saves lives, but recovered children remain at risk of relapse postdischarge. Strategies to reduce this risk may include modification of anthropometric discharge criteria.
Objectives
This study aims to compare the diagnostic accuracy of anthropometric indices to reduce postdischarge relapse risk.
Methods
We searched PubMed from inception to June 2022. We included studies that enrolled children aged 0–59 mo successfully treated for severe or moderate acute malnutrition (SAM or MAM), assessed anthropometry at discharge, and had ≥1 follow-up assessment ≤6 mo postdischarge. Pooled sensitivity and specificity for anthropometric indices at discharge over multiple cutoffs were calculated using a bivariate mixed-effects model. Area under the pooled receiver operating curve (AUC) was estimated to measure diagnostic accuracy. “Pragmatic” cutoffs were defined as those maximizing AUC given both pooled sensitivity and pooled specificity ≥0.75. Primary outcomes were SAM relapse (SAM episode after successful SAM treatment: weight-for-height Z-score (WHZ) < −3, mid-upper arm circumference (MUAC) < 11.5 cm and/or edema) and MAM relapse (MAM episode after successful MAM treatment: −3 ≤ WHZ < −2 or 11.5 cm ≤ MUAC < 12.5 cm). Exposures were WHZ, MUAC, and weight-for-age Z-score (WAZ) at discharge.
Results
We included 34 studies from 16 countries contributing 21,989 children. WHZ at discharge had a higher AUC in predicting lower SAM and MAM relapse risk than MUAC or WAZ at discharge. None of the cutoffs examined met the study definition of “pragmatic.” The closest “pragmatic” cutoffs suggested that WHZ cutoffs of −1.4 and −1.8 or MUAC of 12.6 and 12.7 cm had the highest sensitivity and specificity in predicting lower SAM and MAM relapse risk.
Conclusions
Relapse risk is high after successful MAM/SAM treatment. Future research can consider optimization of anthropometric discharge criteria as a strategy to reduce postdischarge relapse risk, weighing the operational and financial tradeoffs associated with any modification.
This trial was registered at PROSPERO as CRD42022342009. |
| format | Journal Article |
| id | CGSpace177253 |
| institution | CGIAR Consortium |
| language | Inglés |
| publishDate | 2025 |
| publishDateRange | 2025 |
| publishDateSort | 2025 |
| publisher | Elsevier |
| publisherStr | Elsevier |
| record_format | dspace |
| spelling | CGSpace1772532025-12-11T22:08:21Z Optimal anthropometric discharge criteria from treatment of wasting: Meta-analysis of individual patient data from 34 studies Bliznashka, Lilia Chaudhary, Sandhya Rattigan, Susan M. Isanaka, Sheila Adah, Ruth Ahmed, Tahmeed Alam, Nur Alitanou, Rodrigue Bahwere, Paluku Bailey, Jeanette Barthorp, Harriet Becquet, Renaud Belchior-Bellino, Valérie Beri, Alemayehu Berthé, Fatou Bhandari, Nita Bose, Anuradha Burza, Sakib Casademont, Cristian Cazes, Cécile Chaturvedi, Anuraag Collins, Steve Coulibaly, Issa Cuneo, C Nicholas Dansereau, Emily Daures, Maguy Diala, Udochukwu Djibo, Ali Escruela, Montserrat Faal, Abdoulie Griswold, Stacy Guesdon, Benjamin Guindo, Ousmane Hien, Jérémie Hossain, Md Iqbal Hug, Julia Iyengar, Sharad Jasper, Paul John, Collins Kangas, Suvi T. Kornetsky, Kenneth Lambebo, Abera Legese, Liya Lelijveld, Natasha Mahajan, Raman Manary, Mark Mohan, Sanjana Myatt, Mark Nabwera, Helen Nackers, Fabienne Nahar, Baitun Olufemi, Adegoke Patwari, Ashok Phelan, Kevin Rocaspana, Mercè Rogers, Beatrice Sadler, Kate Salpeteur, Cecile Sonko, Bakary Soofi, Sajid Taneja, Sunita Tripathy, Prasanta Wegner, Donna anthropometry capacity development data discharge malnutrition wasting Background Community-based treatment of acute malnutrition saves lives, but recovered children remain at risk of relapse postdischarge. Strategies to reduce this risk may include modification of anthropometric discharge criteria. Objectives This study aims to compare the diagnostic accuracy of anthropometric indices to reduce postdischarge relapse risk. Methods We searched PubMed from inception to June 2022. We included studies that enrolled children aged 0–59 mo successfully treated for severe or moderate acute malnutrition (SAM or MAM), assessed anthropometry at discharge, and had ≥1 follow-up assessment ≤6 mo postdischarge. Pooled sensitivity and specificity for anthropometric indices at discharge over multiple cutoffs were calculated using a bivariate mixed-effects model. Area under the pooled receiver operating curve (AUC) was estimated to measure diagnostic accuracy. “Pragmatic” cutoffs were defined as those maximizing AUC given both pooled sensitivity and pooled specificity ≥0.75. Primary outcomes were SAM relapse (SAM episode after successful SAM treatment: weight-for-height Z-score (WHZ) < −3, mid-upper arm circumference (MUAC) < 11.5 cm and/or edema) and MAM relapse (MAM episode after successful MAM treatment: −3 ≤ WHZ < −2 or 11.5 cm ≤ MUAC < 12.5 cm). Exposures were WHZ, MUAC, and weight-for-age Z-score (WAZ) at discharge. Results We included 34 studies from 16 countries contributing 21,989 children. WHZ at discharge had a higher AUC in predicting lower SAM and MAM relapse risk than MUAC or WAZ at discharge. None of the cutoffs examined met the study definition of “pragmatic.” The closest “pragmatic” cutoffs suggested that WHZ cutoffs of −1.4 and −1.8 or MUAC of 12.6 and 12.7 cm had the highest sensitivity and specificity in predicting lower SAM and MAM relapse risk. Conclusions Relapse risk is high after successful MAM/SAM treatment. Future research can consider optimization of anthropometric discharge criteria as a strategy to reduce postdischarge relapse risk, weighing the operational and financial tradeoffs associated with any modification. This trial was registered at PROSPERO as CRD42022342009. 2025-12 2025-10-21T19:39:44Z 2025-10-21T19:39:44Z Journal Article https://hdl.handle.net/10568/177253 en Open Access Elsevier Bliznashka, Lilia; Chaudhary, Sandhya; Rattigan, Susan M.; Isanaka, Sheila; Adah, Ruth; Ahmed, Tahmeed; et al. 2025. Optimal anthropometric discharge criteria from treatment of wasting: Meta-analysis of individual patient data from 34 studies. American Journal of Clinical Nutrition 122(6): 1658-1668. https://doi.org/10.1016/j.ajcnut.2025.09.010 |
| spellingShingle | anthropometry capacity development data discharge malnutrition wasting Bliznashka, Lilia Chaudhary, Sandhya Rattigan, Susan M. Isanaka, Sheila Adah, Ruth Ahmed, Tahmeed Alam, Nur Alitanou, Rodrigue Bahwere, Paluku Bailey, Jeanette Barthorp, Harriet Becquet, Renaud Belchior-Bellino, Valérie Beri, Alemayehu Berthé, Fatou Bhandari, Nita Bose, Anuradha Burza, Sakib Casademont, Cristian Cazes, Cécile Chaturvedi, Anuraag Collins, Steve Coulibaly, Issa Cuneo, C Nicholas Dansereau, Emily Daures, Maguy Diala, Udochukwu Djibo, Ali Escruela, Montserrat Faal, Abdoulie Griswold, Stacy Guesdon, Benjamin Guindo, Ousmane Hien, Jérémie Hossain, Md Iqbal Hug, Julia Iyengar, Sharad Jasper, Paul John, Collins Kangas, Suvi T. Kornetsky, Kenneth Lambebo, Abera Legese, Liya Lelijveld, Natasha Mahajan, Raman Manary, Mark Mohan, Sanjana Myatt, Mark Nabwera, Helen Nackers, Fabienne Nahar, Baitun Olufemi, Adegoke Patwari, Ashok Phelan, Kevin Rocaspana, Mercè Rogers, Beatrice Sadler, Kate Salpeteur, Cecile Sonko, Bakary Soofi, Sajid Taneja, Sunita Tripathy, Prasanta Wegner, Donna Optimal anthropometric discharge criteria from treatment of wasting: Meta-analysis of individual patient data from 34 studies |
| title | Optimal anthropometric discharge criteria from treatment of wasting: Meta-analysis of individual patient data from 34 studies |
| title_full | Optimal anthropometric discharge criteria from treatment of wasting: Meta-analysis of individual patient data from 34 studies |
| title_fullStr | Optimal anthropometric discharge criteria from treatment of wasting: Meta-analysis of individual patient data from 34 studies |
| title_full_unstemmed | Optimal anthropometric discharge criteria from treatment of wasting: Meta-analysis of individual patient data from 34 studies |
| title_short | Optimal anthropometric discharge criteria from treatment of wasting: Meta-analysis of individual patient data from 34 studies |
| title_sort | optimal anthropometric discharge criteria from treatment of wasting meta analysis of individual patient data from 34 studies |
| topic | anthropometry capacity development data discharge malnutrition wasting |
| url | https://hdl.handle.net/10568/177253 |
| work_keys_str_mv | AT bliznashkalilia optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT chaudharysandhya optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT rattigansusanm optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT isanakasheila optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT adahruth optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT ahmedtahmeed optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT alamnur optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT alitanourodrigue optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT bahwerepaluku optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT baileyjeanette optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT barthorpharriet optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT becquetrenaud optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT belchiorbellinovalerie optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT berialemayehu optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT berthefatou optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT bhandarinita optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT boseanuradha optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT burzasakib optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT casademontcristian optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT cazescecile optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT chaturvedianuraag optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT collinssteve optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT coulibalyissa optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT cuneocnicholas optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT dansereauemily optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT dauresmaguy optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT dialaudochukwu optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT djiboali optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT escruelamontserrat optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT faalabdoulie optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT griswoldstacy optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT guesdonbenjamin optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT guindoousmane optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT hienjeremie optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT hossainmdiqbal optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT hugjulia optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT iyengarsharad optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT jasperpaul optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT johncollins optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT kangassuvit optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT kornetskykenneth optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT lambeboabera optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT legeseliya optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT lelijveldnatasha optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT mahajanraman optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT manarymark optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT mohansanjana optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT myattmark optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT nabwerahelen optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT nackersfabienne optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT naharbaitun optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT olufemiadegoke optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT patwariashok optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT phelankevin optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT rocaspanamerce optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT rogersbeatrice optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT sadlerkate optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT salpeteurcecile optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT sonkobakary optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT soofisajid optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT tanejasunita optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT tripathyprasanta optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies AT wegnerdonna optimalanthropometricdischargecriteriafromtreatmentofwastingmetaanalysisofindividualpatientdatafrom34studies |