Heterosis and line-by-tester combining ability analysis for grain yield and provitamin A in maize
Developing a high-yielding and provitamin A-rich maize variety is one of the best approaches to reduce malnutrition and increase production, especially in regions where maize is a staple food, such as, the former Katanga Province in the Democratic Republic of the Congo. However, it requires a good k...
| Autores principales: | , , , |
|---|---|
| Formato: | Journal Article |
| Lenguaje: | Inglés |
| Publicado: |
Society for the Advancement of Breeding Research in Asia and Oceania
2023
|
| Materias: | |
| Acceso en línea: | https://hdl.handle.net/10568/175722 |
| _version_ | 1855516104421539840 |
|---|---|
| author | Tabu, I. Lubobo, K. Mbuya, K. Kimuni, N. |
| author_browse | Kimuni, N. Lubobo, K. Mbuya, K. Tabu, I. |
| author_facet | Tabu, I. Lubobo, K. Mbuya, K. Kimuni, N. |
| author_sort | Tabu, I. |
| collection | Repository of Agricultural Research Outputs (CGSpace) |
| description | Developing a high-yielding and provitamin A-rich maize variety is one of the best approaches to reduce malnutrition and increase production, especially in regions where maize is a staple food, such as, the former Katanga Province in the Democratic Republic of the Congo. However, it requires a good knowledge of combining ability and heterosis for grain yield and provitamin A. Thus, evaluating grain yield, provitamin A content and other agronomic traits of eight lines, four testers, and their 32 hybrids occurred during the 2015-2016 and 2016-2017 cropping seasons. The results showed that genetic parameters related to combining ability and heterosis among various F1 hybrids influenced all the studied traits except plant height. The parental genotypes P6 and P10 were suitable for improving 100-kernel weight, grain yield, stature at ear insertion, and provitamin A content. The parental genotypes P7, P4, and P2 were promising for provitamin A content, while the parental genotype P3 was leading for grain yield. Five hybrids (P10 × P5, P10 × P6, P10 × P7, P10 × P8, and P11 × P5) showed distinction as the best specific combinations for improving productivity and provitamin A content. The F1 hybrid P10 × P6 with desirable specific combining ability revealed that it is helpful as the best combination in producing double and triple hybrids with the highest yield and provitamin A potential. Crosses P10 × P5 and P11 × P5 can serve as the best cross combinations for grain yield, while hybrids P10 × P7 and P10 × P8 showed promising for provitamin A content. The presented results could benefit future breeding programs to develop maize genotypes with high yield and provitamin A elements, alleviating food insecurity and malnutrition. |
| format | Journal Article |
| id | CGSpace175722 |
| institution | CGIAR Consortium |
| language | Inglés |
| publishDate | 2023 |
| publishDateRange | 2023 |
| publishDateSort | 2023 |
| publisher | Society for the Advancement of Breeding Research in Asia and Oceania |
| publisherStr | Society for the Advancement of Breeding Research in Asia and Oceania |
| record_format | dspace |
| spelling | CGSpace1757222025-07-22T16:49:12Z Heterosis and line-by-tester combining ability analysis for grain yield and provitamin A in maize Tabu, I. Lubobo, K. Mbuya, K. Kimuni, N. maize heterosis grain yields provitamins retinol hybrids Developing a high-yielding and provitamin A-rich maize variety is one of the best approaches to reduce malnutrition and increase production, especially in regions where maize is a staple food, such as, the former Katanga Province in the Democratic Republic of the Congo. However, it requires a good knowledge of combining ability and heterosis for grain yield and provitamin A. Thus, evaluating grain yield, provitamin A content and other agronomic traits of eight lines, four testers, and their 32 hybrids occurred during the 2015-2016 and 2016-2017 cropping seasons. The results showed that genetic parameters related to combining ability and heterosis among various F1 hybrids influenced all the studied traits except plant height. The parental genotypes P6 and P10 were suitable for improving 100-kernel weight, grain yield, stature at ear insertion, and provitamin A content. The parental genotypes P7, P4, and P2 were promising for provitamin A content, while the parental genotype P3 was leading for grain yield. Five hybrids (P10 × P5, P10 × P6, P10 × P7, P10 × P8, and P11 × P5) showed distinction as the best specific combinations for improving productivity and provitamin A content. The F1 hybrid P10 × P6 with desirable specific combining ability revealed that it is helpful as the best combination in producing double and triple hybrids with the highest yield and provitamin A potential. Crosses P10 × P5 and P11 × P5 can serve as the best cross combinations for grain yield, while hybrids P10 × P7 and P10 × P8 showed promising for provitamin A content. The presented results could benefit future breeding programs to develop maize genotypes with high yield and provitamin A elements, alleviating food insecurity and malnutrition. 2023-06-30 2025-07-22T16:49:11Z 2025-07-22T16:49:11Z Journal Article https://hdl.handle.net/10568/175722 en Open Access Society for the Advancement of Breeding Research in Asia and Oceania Tabu, I.; Lubobo, K.; Mbuya, K.; and Kimuni, N. 2023. Heterosis and line-by-tester combining ability analysis for grain yield and provitamin A in maize. SABRAO Journal of Breeding and Genetics 55(3): 695-707. http://doi.org/10.54910/sabrao2023.55.3.8 |
| spellingShingle | maize heterosis grain yields provitamins retinol hybrids Tabu, I. Lubobo, K. Mbuya, K. Kimuni, N. Heterosis and line-by-tester combining ability analysis for grain yield and provitamin A in maize |
| title | Heterosis and line-by-tester combining ability analysis for grain yield and provitamin A in maize |
| title_full | Heterosis and line-by-tester combining ability analysis for grain yield and provitamin A in maize |
| title_fullStr | Heterosis and line-by-tester combining ability analysis for grain yield and provitamin A in maize |
| title_full_unstemmed | Heterosis and line-by-tester combining ability analysis for grain yield and provitamin A in maize |
| title_short | Heterosis and line-by-tester combining ability analysis for grain yield and provitamin A in maize |
| title_sort | heterosis and line by tester combining ability analysis for grain yield and provitamin a in maize |
| topic | maize heterosis grain yields provitamins retinol hybrids |
| url | https://hdl.handle.net/10568/175722 |
| work_keys_str_mv | AT tabui heterosisandlinebytestercombiningabilityanalysisforgrainyieldandprovitaminainmaize AT lubobok heterosisandlinebytestercombiningabilityanalysisforgrainyieldandprovitaminainmaize AT mbuyak heterosisandlinebytestercombiningabilityanalysisforgrainyieldandprovitaminainmaize AT kimunin heterosisandlinebytestercombiningabilityanalysisforgrainyieldandprovitaminainmaize |