GBLUP outperforms quantile mapping and outlier detection for enhanced genomic prediction
Genomic selection (GS) accelerates plant breeding by predicting complex traits using genomic data. This study compares genomic best linear unbiased prediction (GBLUP), quantile mapping (QM)—an adjustment to GBLUP predictions—and four outlier detection methods. Using 14 real datasets, predictive accu...
| Autores principales: | , , , , , , , , , , , |
|---|---|
| Formato: | Journal Article |
| Lenguaje: | Inglés |
| Publicado: |
MDPI
2025
|
| Materias: | |
| Acceso en línea: | https://hdl.handle.net/10568/175487 |
Ejemplares similares: GBLUP outperforms quantile mapping and outlier detection for enhanced genomic prediction
- Genotype performance estimation in targeted production environments by using sparse genomic prediction
- Genomic selection with weighted GBLUP and APY single step
- Boosting genomic prediction transferability with sparse testing
- Sustainable Intensification of Mixed Farming Systems Initiative: Outlier observations
- Optimizing genomic prediction with transfer learning under a ridge regression framework
- Maize-Pigeonpea Intercropping Outperforms Monocultures Under Drought