Global Rice Paddy Inventory (GRPI): A high-resolution inventory of methane emissions from rice agriculture based on landsat satellite inundation data
Rice agriculture is a major source of atmospheric methane, but current emission inventories are highly uncertain, mostly due to poor rice-specific inundation data. Inversions of atmospheric methane observations can help to better quantify rice emissions but require high-resolution prior information...
| Main Authors: | , , , , , , , , , , , |
|---|---|
| Format: | Journal Article |
| Language: | Inglés |
| Published: |
American Geophysical Union (AGU)
2025
|
| Subjects: | |
| Online Access: | https://hdl.handle.net/10568/175438 |
| _version_ | 1855518713602637824 |
|---|---|
| author | Chen, Zichong Lin, Haipeng Balasus, Nicholas Hardy, Andy East, James D. Zhang, Yuzhong Runkle, Benjamin R. K. Hancock, Sarah E. Taylor, Charles A. Du, Xinming Sander, Bjoern Ole Jacob, Daniel J. |
| author_browse | Balasus, Nicholas Chen, Zichong Du, Xinming East, James D. Hancock, Sarah E. Hardy, Andy Jacob, Daniel J. Lin, Haipeng Runkle, Benjamin R. K. Sander, Bjoern Ole Taylor, Charles A. Zhang, Yuzhong |
| author_facet | Chen, Zichong Lin, Haipeng Balasus, Nicholas Hardy, Andy East, James D. Zhang, Yuzhong Runkle, Benjamin R. K. Hancock, Sarah E. Taylor, Charles A. Du, Xinming Sander, Bjoern Ole Jacob, Daniel J. |
| author_sort | Chen, Zichong |
| collection | Repository of Agricultural Research Outputs (CGSpace) |
| description | Rice agriculture is a major source of atmospheric methane, but current emission inventories are highly uncertain, mostly due to poor rice-specific inundation data. Inversions of atmospheric methane observations can help to better quantify rice emissions but require high-resolution prior information on the location and timing of emissions. Here we use Landsat satellite data at 30 m resolution to map the global monthly distribution of rice paddy fractional areas on a 0.1° × 0.1° (∼10 × 10 km) grid by optimizing an algorithm for flooded vegetation and combining it with a 30 m global cropland database and rice-specific data. We validate this global rice paddy map with an independent US rice database and with seasonal flux measurements from the FLUXNET CH4 network, estimating errors on rice area fraction of 31% on the 0.1° × 0.1° grid and 10% regionally. We combine the rice paddy map with an extensive global data set of emission factors (EFs) per unit of rice paddy area. The resulting Global Rice Paddy Inventory (GRPI) provides methane emission estimates at 0.1° × 0.1° (∼10 × 10 km) spatial resolution and monthly resolution. Our global emission of 39.3 ± 4.7 Tg a−1 for 2022 (best estimate and error standard deviation) is higher than previous inventories that use outdated rice maps and IPCC-recommended EFs now considered to be too low. China is the largest rice emitter in GRPI (8.2 ± 1.0 Tg a−1), followed by India (6.5 ± 1.0 Tg a−1), Bangladesh (5.7 ± 1.2 Tg a−1), Vietnam (5.7 ± 1.0 Tg a−1), and Thailand (4.4 ± 0.9 Tg a−1). These five countries together account for 78% of global total rice emissions. Seasonality of emissions varies considerably between and within individual countries reflecting differences in climate and crop practices. We define a rice methane intensity (methane emission per unit of rice produced) to assess the potential of mitigating methane emission without compromising food security. We find national methane intensities ranging from 10 to 120 kg methane per ton of rice produced (global mean 51) for major rice-growing countries. Countries can achieve low intensities with high-yield cultivars, upland rice agriculture, water management, and organic matter management. |
| format | Journal Article |
| id | CGSpace175438 |
| institution | CGIAR Consortium |
| language | Inglés |
| publishDate | 2025 |
| publishDateRange | 2025 |
| publishDateSort | 2025 |
| publisher | American Geophysical Union (AGU) |
| publisherStr | American Geophysical Union (AGU) |
| record_format | dspace |
| spelling | CGSpace1754382025-10-26T13:02:11Z Global Rice Paddy Inventory (GRPI): A high-resolution inventory of methane emissions from rice agriculture based on landsat satellite inundation data Chen, Zichong Lin, Haipeng Balasus, Nicholas Hardy, Andy East, James D. Zhang, Yuzhong Runkle, Benjamin R. K. Hancock, Sarah E. Taylor, Charles A. Du, Xinming Sander, Bjoern Ole Jacob, Daniel J. rice paddy fields crop production crop management water management organic matter methane greenhouse gases climate change environmental impact remote sensing landsat geographical information systems modelling data analysis Rice agriculture is a major source of atmospheric methane, but current emission inventories are highly uncertain, mostly due to poor rice-specific inundation data. Inversions of atmospheric methane observations can help to better quantify rice emissions but require high-resolution prior information on the location and timing of emissions. Here we use Landsat satellite data at 30 m resolution to map the global monthly distribution of rice paddy fractional areas on a 0.1° × 0.1° (∼10 × 10 km) grid by optimizing an algorithm for flooded vegetation and combining it with a 30 m global cropland database and rice-specific data. We validate this global rice paddy map with an independent US rice database and with seasonal flux measurements from the FLUXNET CH4 network, estimating errors on rice area fraction of 31% on the 0.1° × 0.1° grid and 10% regionally. We combine the rice paddy map with an extensive global data set of emission factors (EFs) per unit of rice paddy area. The resulting Global Rice Paddy Inventory (GRPI) provides methane emission estimates at 0.1° × 0.1° (∼10 × 10 km) spatial resolution and monthly resolution. Our global emission of 39.3 ± 4.7 Tg a−1 for 2022 (best estimate and error standard deviation) is higher than previous inventories that use outdated rice maps and IPCC-recommended EFs now considered to be too low. China is the largest rice emitter in GRPI (8.2 ± 1.0 Tg a−1), followed by India (6.5 ± 1.0 Tg a−1), Bangladesh (5.7 ± 1.2 Tg a−1), Vietnam (5.7 ± 1.0 Tg a−1), and Thailand (4.4 ± 0.9 Tg a−1). These five countries together account for 78% of global total rice emissions. Seasonality of emissions varies considerably between and within individual countries reflecting differences in climate and crop practices. We define a rice methane intensity (methane emission per unit of rice produced) to assess the potential of mitigating methane emission without compromising food security. We find national methane intensities ranging from 10 to 120 kg methane per ton of rice produced (global mean 51) for major rice-growing countries. Countries can achieve low intensities with high-yield cultivars, upland rice agriculture, water management, and organic matter management. 2025-04 2025-07-02T07:57:42Z 2025-07-02T07:57:42Z Journal Article https://hdl.handle.net/10568/175438 en Open Access American Geophysical Union (AGU) Chen, Zichong, Haipeng Lin, Nicholas Balasus, Andy Hardy, James D. East, Yuzhong Zhang, Benjamin RK Runkle et al. "Global rice paddy inventory (GRPI): A high‐resolution inventory of methane emissions from rice agriculture based on landsat satellite inundation data." Earth's Future 13, no. 4 (2025): e2024EF005479. |
| spellingShingle | rice paddy fields crop production crop management water management organic matter methane greenhouse gases climate change environmental impact remote sensing landsat geographical information systems modelling data analysis Chen, Zichong Lin, Haipeng Balasus, Nicholas Hardy, Andy East, James D. Zhang, Yuzhong Runkle, Benjamin R. K. Hancock, Sarah E. Taylor, Charles A. Du, Xinming Sander, Bjoern Ole Jacob, Daniel J. Global Rice Paddy Inventory (GRPI): A high-resolution inventory of methane emissions from rice agriculture based on landsat satellite inundation data |
| title | Global Rice Paddy Inventory (GRPI): A high-resolution inventory of methane emissions from rice agriculture based on landsat satellite inundation data |
| title_full | Global Rice Paddy Inventory (GRPI): A high-resolution inventory of methane emissions from rice agriculture based on landsat satellite inundation data |
| title_fullStr | Global Rice Paddy Inventory (GRPI): A high-resolution inventory of methane emissions from rice agriculture based on landsat satellite inundation data |
| title_full_unstemmed | Global Rice Paddy Inventory (GRPI): A high-resolution inventory of methane emissions from rice agriculture based on landsat satellite inundation data |
| title_short | Global Rice Paddy Inventory (GRPI): A high-resolution inventory of methane emissions from rice agriculture based on landsat satellite inundation data |
| title_sort | global rice paddy inventory grpi a high resolution inventory of methane emissions from rice agriculture based on landsat satellite inundation data |
| topic | rice paddy fields crop production crop management water management organic matter methane greenhouse gases climate change environmental impact remote sensing landsat geographical information systems modelling data analysis |
| url | https://hdl.handle.net/10568/175438 |
| work_keys_str_mv | AT chenzichong globalricepaddyinventorygrpiahighresolutioninventoryofmethaneemissionsfromriceagriculturebasedonlandsatsatelliteinundationdata AT linhaipeng globalricepaddyinventorygrpiahighresolutioninventoryofmethaneemissionsfromriceagriculturebasedonlandsatsatelliteinundationdata AT balasusnicholas globalricepaddyinventorygrpiahighresolutioninventoryofmethaneemissionsfromriceagriculturebasedonlandsatsatelliteinundationdata AT hardyandy globalricepaddyinventorygrpiahighresolutioninventoryofmethaneemissionsfromriceagriculturebasedonlandsatsatelliteinundationdata AT eastjamesd globalricepaddyinventorygrpiahighresolutioninventoryofmethaneemissionsfromriceagriculturebasedonlandsatsatelliteinundationdata AT zhangyuzhong globalricepaddyinventorygrpiahighresolutioninventoryofmethaneemissionsfromriceagriculturebasedonlandsatsatelliteinundationdata AT runklebenjaminrk globalricepaddyinventorygrpiahighresolutioninventoryofmethaneemissionsfromriceagriculturebasedonlandsatsatelliteinundationdata AT hancocksarahe globalricepaddyinventorygrpiahighresolutioninventoryofmethaneemissionsfromriceagriculturebasedonlandsatsatelliteinundationdata AT taylorcharlesa globalricepaddyinventorygrpiahighresolutioninventoryofmethaneemissionsfromriceagriculturebasedonlandsatsatelliteinundationdata AT duxinming globalricepaddyinventorygrpiahighresolutioninventoryofmethaneemissionsfromriceagriculturebasedonlandsatsatelliteinundationdata AT sanderbjoernole globalricepaddyinventorygrpiahighresolutioninventoryofmethaneemissionsfromriceagriculturebasedonlandsatsatelliteinundationdata AT jacobdanielj globalricepaddyinventorygrpiahighresolutioninventoryofmethaneemissionsfromriceagriculturebasedonlandsatsatelliteinundationdata |