Hybridization of process-based models, remote sensing, and machine learning for enhanced spatial predictions of wheat yield and quality

Ensuring accurate predictions of wheat yield and nutritional content is vital for enhancing agricultural pro ductivity and food security. This study aims to improve wheat yield prediction by integrating process-based models (PBM), machine learning (ML), and remote sensing (RS) techniques. Three Dec...

Descripción completa

Detalles Bibliográficos
Autores principales: Kheir, Ahmed M.S., Govind, Ajit, Nangia, Vinay, El-Maghraby, Maher A., Elnashar, Abdelrazek, Ahmed, Mukhtar, Aboelsoud, Hesham, Mostafa, Rania, Feike, Til
Formato: Journal Article
Lenguaje:Inglés
Publicado: Elsevier 2025
Materias:
Acceso en línea:https://hdl.handle.net/10568/175162

Ejemplares similares: Hybridization of process-based models, remote sensing, and machine learning for enhanced spatial predictions of wheat yield and quality