Parametric and machine learning approaches to examine yield differences between control and treatment considering outliers and statistical biases: The case of insect resistant/herbicide tolerant (IR/HT) maize in Honduras

Robust impact assessment methods need credible yield, costs, and other production performance parameter estimates. Sample data issues and the realities of producer heterogeneity and markets, including endogeneity, simultaneity, and outliers can affect such parameters. Methods have continued to evolv...

Descripción completa

Detalles Bibliográficos
Autores principales: Falck-Zepeda, José B., Zambrano, Patricia, Sanders, Arie, Trabanino, Carlos Rogelio
Formato: Artículo preliminar
Lenguaje:Inglés
Publicado: International Food Policy Research Institute 2025
Materias:
Acceso en línea:https://hdl.handle.net/10568/174327

Ejemplares similares: Parametric and machine learning approaches to examine yield differences between control and treatment considering outliers and statistical biases: The case of insect resistant/herbicide tolerant (IR/HT) maize in Honduras