TreeEyed: A QGIS plugin for tree monitoring in silvopastoral systems using state of the art AI models

Tree monitoring is a challenging task due to the labour-intensive and time-consuming data collection methods required. We present TreeEyed, a QGIS plugin designed to facilitate the monitoring of trees using remote sensing RGB imagery and artificial intelligence models. The plugin offers several tool...

Full description

Bibliographic Details
Main Authors: Ruiz-Hurtado, Andres Felipe, Bolaños, Juliana Perez, Arrechea-Castillo, Darwin Alexis, Cardoso, Juan Andres
Format: Journal Article
Language:Inglés
Published: Elsevier 2025
Subjects:
Online Access:https://hdl.handle.net/10568/172989
_version_ 1855527889148051456
author Ruiz-Hurtado, Andres Felipe
Bolaños, Juliana Perez
Arrechea-Castillo, Darwin Alexis
Cardoso, Juan Andres
author_browse Arrechea-Castillo, Darwin Alexis
Bolaños, Juliana Perez
Cardoso, Juan Andres
Ruiz-Hurtado, Andres Felipe
author_facet Ruiz-Hurtado, Andres Felipe
Bolaños, Juliana Perez
Arrechea-Castillo, Darwin Alexis
Cardoso, Juan Andres
author_sort Ruiz-Hurtado, Andres Felipe
collection Repository of Agricultural Research Outputs (CGSpace)
description Tree monitoring is a challenging task due to the labour-intensive and time-consuming data collection methods required. We present TreeEyed, a QGIS plugin designed to facilitate the monitoring of trees using remote sensing RGB imagery and artificial intelligence models. The plugin offers several tools including tree inference process for tree segmentation and detection. This tool was implemented to facilitate the manipulation and processing of Geographical Information System (GIS) data from different sources, allowing multi-resolution, variable extent, and generating results in a standard GIS format (georeferenced raster and vector). Additional options like postprocessing, dataset generation, and data validation are also incorporated.
format Journal Article
id CGSpace172989
institution CGIAR Consortium
language Inglés
publishDate 2025
publishDateRange 2025
publishDateSort 2025
publisher Elsevier
publisherStr Elsevier
record_format dspace
spelling CGSpace1729892025-11-11T18:51:32Z TreeEyed: A QGIS plugin for tree monitoring in silvopastoral systems using state of the art AI models Ruiz-Hurtado, Andres Felipe Bolaños, Juliana Perez Arrechea-Castillo, Darwin Alexis Cardoso, Juan Andres remote sensing trees silvopastoral systems monitoring geographical information systems-geographic information systems sistema de información geográfica imagery-computer vision imagen-visión por ordenador sensor sistema silvopascícola-sistemas silvopastorales Árbol forestal Tree monitoring is a challenging task due to the labour-intensive and time-consuming data collection methods required. We present TreeEyed, a QGIS plugin designed to facilitate the monitoring of trees using remote sensing RGB imagery and artificial intelligence models. The plugin offers several tools including tree inference process for tree segmentation and detection. This tool was implemented to facilitate the manipulation and processing of Geographical Information System (GIS) data from different sources, allowing multi-resolution, variable extent, and generating results in a standard GIS format (georeferenced raster and vector). Additional options like postprocessing, dataset generation, and data validation are also incorporated. 2025-02 2025-02-12T15:12:51Z 2025-02-12T15:12:51Z Journal Article https://hdl.handle.net/10568/172989 en Open Access application/pdf Elsevier Ruiz-Hurtado, A.F.; Bolaños, J.P.; Arrechea-Castillo, D.A.; Cardoso, J.A. (2025) TreeEyed: A QGIS plugin for tree monitoring in silvopastoral systems using state of the art AI models. SoftwareX 29: 102071. ISSN: 2352-7110
spellingShingle remote sensing
trees
silvopastoral systems
monitoring
geographical information systems-geographic information systems
sistema de información geográfica
imagery-computer vision
imagen-visión por ordenador
sensor
sistema silvopascícola-sistemas silvopastorales
Árbol forestal
Ruiz-Hurtado, Andres Felipe
Bolaños, Juliana Perez
Arrechea-Castillo, Darwin Alexis
Cardoso, Juan Andres
TreeEyed: A QGIS plugin for tree monitoring in silvopastoral systems using state of the art AI models
title TreeEyed: A QGIS plugin for tree monitoring in silvopastoral systems using state of the art AI models
title_full TreeEyed: A QGIS plugin for tree monitoring in silvopastoral systems using state of the art AI models
title_fullStr TreeEyed: A QGIS plugin for tree monitoring in silvopastoral systems using state of the art AI models
title_full_unstemmed TreeEyed: A QGIS plugin for tree monitoring in silvopastoral systems using state of the art AI models
title_short TreeEyed: A QGIS plugin for tree monitoring in silvopastoral systems using state of the art AI models
title_sort treeeyed a qgis plugin for tree monitoring in silvopastoral systems using state of the art ai models
topic remote sensing
trees
silvopastoral systems
monitoring
geographical information systems-geographic information systems
sistema de información geográfica
imagery-computer vision
imagen-visión por ordenador
sensor
sistema silvopascícola-sistemas silvopastorales
Árbol forestal
url https://hdl.handle.net/10568/172989
work_keys_str_mv AT ruizhurtadoandresfelipe treeeyedaqgispluginfortreemonitoringinsilvopastoralsystemsusingstateoftheartaimodels
AT bolanosjulianaperez treeeyedaqgispluginfortreemonitoringinsilvopastoralsystemsusingstateoftheartaimodels
AT arrecheacastillodarwinalexis treeeyedaqgispluginfortreemonitoringinsilvopastoralsystemsusingstateoftheartaimodels
AT cardosojuanandres treeeyedaqgispluginfortreemonitoringinsilvopastoralsystemsusingstateoftheartaimodels