Developing automated machine learning approach for fast and robust crop yield prediction using a fusion of remote sensing, soil, and weather dataset

Estimating smallholder crop yields robustly and timely is crucial for improving agronomic practices, determining yield gaps, guiding investment, and policymaking to ensure food security. However, there is poor estimation of yield for most smallholders due to lack of technology, and field scale data,...

Descripción completa

Detalles Bibliográficos
Autores principales: Kheir, Ahmed M.S., Govind, Ajit, Nangia, Vinay, Devkota Wasti, Mina Kumari, Elnashar, Abdelrazek, Omar, Mohie, Feike, Til
Formato: Journal Article
Lenguaje:Inglés
Publicado: IOP Publishing 2024
Materias:
Acceso en línea:https://hdl.handle.net/10568/172410

Ejemplares similares: Developing automated machine learning approach for fast and robust crop yield prediction using a fusion of remote sensing, soil, and weather dataset