Multiomics of a rice population identifies genes and genomic regions that bestow low glycemic index and high protein content

To counter the rising incidence of diabetes and to meet the daily protein needs, we created low glycemic index (GI) rice varieties with protein content (PC) surpassing 14%. In the development of recombinant inbred lines using Samba Mahsuri and IR36 amylose extender (IR36ae) as parental lines, we ide...

Full description

Bibliographic Details
Main Authors: Badoni, Saurabh, Pasion-Uy, Erstelle A., Kor, Sakshi, Kim, Sung-Ryul, Tiozon, Rhowell N., Misra, Gopal, Buenafe, Reuben James Q., Labarga, Luster May, Ramos-Castrosanto, Ana Rose, Pratap, Vipin, Slamet-Loedin, Inez, Steimker, Julia von, Alseekh, Saleh, Fernie, Alisdair R., Kohli, Ajay, Khush, Gurudev S., Sreenivasulu, Nese
Format: Journal Article
Language:Inglés
Published: Proceedings of the National Academy of Sciences 2024
Subjects:
Online Access:https://hdl.handle.net/10568/168150
_version_ 1855521338739916800
author Badoni, Saurabh
Pasion-Uy, Erstelle A.
Kor, Sakshi
Kim, Sung-Ryul
Tiozon, Rhowell N.
Misra, Gopal
Buenafe, Reuben James Q.
Labarga, Luster May
Ramos-Castrosanto, Ana Rose
Pratap, Vipin
Slamet-Loedin, Inez
Steimker, Julia von
Alseekh, Saleh
Fernie, Alisdair R.
Kohli, Ajay
Khush, Gurudev S.
Sreenivasulu, Nese
author_browse Alseekh, Saleh
Badoni, Saurabh
Buenafe, Reuben James Q.
Fernie, Alisdair R.
Khush, Gurudev S.
Kim, Sung-Ryul
Kohli, Ajay
Kor, Sakshi
Labarga, Luster May
Misra, Gopal
Pasion-Uy, Erstelle A.
Pratap, Vipin
Ramos-Castrosanto, Ana Rose
Slamet-Loedin, Inez
Sreenivasulu, Nese
Steimker, Julia von
Tiozon, Rhowell N.
author_facet Badoni, Saurabh
Pasion-Uy, Erstelle A.
Kor, Sakshi
Kim, Sung-Ryul
Tiozon, Rhowell N.
Misra, Gopal
Buenafe, Reuben James Q.
Labarga, Luster May
Ramos-Castrosanto, Ana Rose
Pratap, Vipin
Slamet-Loedin, Inez
Steimker, Julia von
Alseekh, Saleh
Fernie, Alisdair R.
Kohli, Ajay
Khush, Gurudev S.
Sreenivasulu, Nese
author_sort Badoni, Saurabh
collection Repository of Agricultural Research Outputs (CGSpace)
description To counter the rising incidence of diabetes and to meet the daily protein needs, we created low glycemic index (GI) rice varieties with protein content (PC) surpassing 14%. In the development of recombinant inbred lines using Samba Mahsuri and IR36 amylose extender (IR36ae) as parental lines, we identified quantitative trait loci and genes associated with low GI, high amylose content (AC), and high PC. By integrating genetic techniques with classification models, this comprehensive approach identified candidate genes on chromosome 2 (qGI2.1/qAC2.1 spanning the region from 18.62 Mb to 19.95 Mb), exerting influence on low GI and high amylose. Notably, the phenotypic variant with high value was associated with the recessive allele of the starch branching enzyme 2b (sbeIIb). The genome-edited sbeIIb line confirmed low GI phenotype in milled rice grains. Further, combinations of alleles created by the highly significant SNPs from the targeted associations and epistatically interacting genes showed ultralow GI phenotypes with high amylose and high protein. Metabolomics analysis of rice with varying AC, PC, and GI revealed that the superior lines of high AC and PC, and low GI were preferentially enriched in glycolytic and amino acid metabolisms, whereas the inferior lines of low AC and PC and high GI were enriched with fatty acid metabolism. The high amylose high protein recombinant inbred line (HAHP_101) was enriched in essential amino acids like lysine. Such lines may be highly relevant for food product development to address diabetes and malnutrition.
format Journal Article
id CGSpace168150
institution CGIAR Consortium
language Inglés
publishDate 2024
publishDateRange 2024
publishDateSort 2024
publisher Proceedings of the National Academy of Sciences
publisherStr Proceedings of the National Academy of Sciences
record_format dspace
spelling CGSpace1681502026-01-06T12:03:45Z Multiomics of a rice population identifies genes and genomic regions that bestow low glycemic index and high protein content Badoni, Saurabh Pasion-Uy, Erstelle A. Kor, Sakshi Kim, Sung-Ryul Tiozon, Rhowell N. Misra, Gopal Buenafe, Reuben James Q. Labarga, Luster May Ramos-Castrosanto, Ana Rose Pratap, Vipin Slamet-Loedin, Inez Steimker, Julia von Alseekh, Saleh Fernie, Alisdair R. Kohli, Ajay Khush, Gurudev S. Sreenivasulu, Nese inbred lines varieties starch proteins rice genomics To counter the rising incidence of diabetes and to meet the daily protein needs, we created low glycemic index (GI) rice varieties with protein content (PC) surpassing 14%. In the development of recombinant inbred lines using Samba Mahsuri and IR36 amylose extender (IR36ae) as parental lines, we identified quantitative trait loci and genes associated with low GI, high amylose content (AC), and high PC. By integrating genetic techniques with classification models, this comprehensive approach identified candidate genes on chromosome 2 (qGI2.1/qAC2.1 spanning the region from 18.62 Mb to 19.95 Mb), exerting influence on low GI and high amylose. Notably, the phenotypic variant with high value was associated with the recessive allele of the starch branching enzyme 2b (sbeIIb). The genome-edited sbeIIb line confirmed low GI phenotype in milled rice grains. Further, combinations of alleles created by the highly significant SNPs from the targeted associations and epistatically interacting genes showed ultralow GI phenotypes with high amylose and high protein. Metabolomics analysis of rice with varying AC, PC, and GI revealed that the superior lines of high AC and PC, and low GI were preferentially enriched in glycolytic and amino acid metabolisms, whereas the inferior lines of low AC and PC and high GI were enriched with fatty acid metabolism. The high amylose high protein recombinant inbred line (HAHP_101) was enriched in essential amino acids like lysine. Such lines may be highly relevant for food product development to address diabetes and malnutrition. 2024-09-03 2024-12-20T15:56:31Z 2024-12-20T15:56:31Z Journal Article https://hdl.handle.net/10568/168150 en Open Access application/pdf Proceedings of the National Academy of Sciences Badoni, Saurabh, Erstelle A. Pasion-Uy, Sakshi Kor, Sung-Ryul Kim, Rhowell N. Tiozon Jr, Gopal Misra, Reuben James Q. Buenafe et al. "Multiomics of a rice population identifies genes and genomic regions that bestow low glycemic index and high protein content." Proceedings of the National Academy of Sciences 121, no. 36 (2024): e2410598121.
spellingShingle inbred lines
varieties
starch
proteins
rice
genomics
Badoni, Saurabh
Pasion-Uy, Erstelle A.
Kor, Sakshi
Kim, Sung-Ryul
Tiozon, Rhowell N.
Misra, Gopal
Buenafe, Reuben James Q.
Labarga, Luster May
Ramos-Castrosanto, Ana Rose
Pratap, Vipin
Slamet-Loedin, Inez
Steimker, Julia von
Alseekh, Saleh
Fernie, Alisdair R.
Kohli, Ajay
Khush, Gurudev S.
Sreenivasulu, Nese
Multiomics of a rice population identifies genes and genomic regions that bestow low glycemic index and high protein content
title Multiomics of a rice population identifies genes and genomic regions that bestow low glycemic index and high protein content
title_full Multiomics of a rice population identifies genes and genomic regions that bestow low glycemic index and high protein content
title_fullStr Multiomics of a rice population identifies genes and genomic regions that bestow low glycemic index and high protein content
title_full_unstemmed Multiomics of a rice population identifies genes and genomic regions that bestow low glycemic index and high protein content
title_short Multiomics of a rice population identifies genes and genomic regions that bestow low glycemic index and high protein content
title_sort multiomics of a rice population identifies genes and genomic regions that bestow low glycemic index and high protein content
topic inbred lines
varieties
starch
proteins
rice
genomics
url https://hdl.handle.net/10568/168150
work_keys_str_mv AT badonisaurabh multiomicsofaricepopulationidentifiesgenesandgenomicregionsthatbestowlowglycemicindexandhighproteincontent
AT pasionuyerstellea multiomicsofaricepopulationidentifiesgenesandgenomicregionsthatbestowlowglycemicindexandhighproteincontent
AT korsakshi multiomicsofaricepopulationidentifiesgenesandgenomicregionsthatbestowlowglycemicindexandhighproteincontent
AT kimsungryul multiomicsofaricepopulationidentifiesgenesandgenomicregionsthatbestowlowglycemicindexandhighproteincontent
AT tiozonrhowelln multiomicsofaricepopulationidentifiesgenesandgenomicregionsthatbestowlowglycemicindexandhighproteincontent
AT misragopal multiomicsofaricepopulationidentifiesgenesandgenomicregionsthatbestowlowglycemicindexandhighproteincontent
AT buenafereubenjamesq multiomicsofaricepopulationidentifiesgenesandgenomicregionsthatbestowlowglycemicindexandhighproteincontent
AT labargalustermay multiomicsofaricepopulationidentifiesgenesandgenomicregionsthatbestowlowglycemicindexandhighproteincontent
AT ramoscastrosantoanarose multiomicsofaricepopulationidentifiesgenesandgenomicregionsthatbestowlowglycemicindexandhighproteincontent
AT pratapvipin multiomicsofaricepopulationidentifiesgenesandgenomicregionsthatbestowlowglycemicindexandhighproteincontent
AT slametloedininez multiomicsofaricepopulationidentifiesgenesandgenomicregionsthatbestowlowglycemicindexandhighproteincontent
AT steimkerjuliavon multiomicsofaricepopulationidentifiesgenesandgenomicregionsthatbestowlowglycemicindexandhighproteincontent
AT alseekhsaleh multiomicsofaricepopulationidentifiesgenesandgenomicregionsthatbestowlowglycemicindexandhighproteincontent
AT ferniealisdairr multiomicsofaricepopulationidentifiesgenesandgenomicregionsthatbestowlowglycemicindexandhighproteincontent
AT kohliajay multiomicsofaricepopulationidentifiesgenesandgenomicregionsthatbestowlowglycemicindexandhighproteincontent
AT khushgurudevs multiomicsofaricepopulationidentifiesgenesandgenomicregionsthatbestowlowglycemicindexandhighproteincontent
AT sreenivasulunese multiomicsofaricepopulationidentifiesgenesandgenomicregionsthatbestowlowglycemicindexandhighproteincontent