Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice

Retrotransposons are the main components of eukaryotic genomes, representing up to 80% of some large plant genomes. These mobile elements transpose via a “copy and paste” mechanism, thus increasing their copy number while active. Their accumulation is now accepted as the main factor of genome size i...

Descripción completa

Detalles Bibliográficos
Autores principales: Piegu, Benoit, Guyot, Romain, Picault, Nathalie, Roulin, Anne, Saniyal, Abhijit, Kim, Hyeran, Collura, Kristi, Brar, Darshan S., Jackson, Scott, Wing, Rod A., Panaud, Olivier
Formato: Journal Article
Lenguaje:Inglés
Publicado: Cold Spring Harbor Laboratory 2006
Materias:
Acceso en línea:https://hdl.handle.net/10568/166565
_version_ 1855537922743205888
author Piegu, Benoit
Guyot, Romain
Picault, Nathalie
Roulin, Anne
Saniyal, Abhijit
Kim, Hyeran
Collura, Kristi
Brar, Darshan S.
Jackson, Scott
Wing, Rod A.
Panaud, Olivier
author_browse Brar, Darshan S.
Collura, Kristi
Guyot, Romain
Jackson, Scott
Kim, Hyeran
Panaud, Olivier
Picault, Nathalie
Piegu, Benoit
Roulin, Anne
Saniyal, Abhijit
Wing, Rod A.
author_facet Piegu, Benoit
Guyot, Romain
Picault, Nathalie
Roulin, Anne
Saniyal, Abhijit
Kim, Hyeran
Collura, Kristi
Brar, Darshan S.
Jackson, Scott
Wing, Rod A.
Panaud, Olivier
author_sort Piegu, Benoit
collection Repository of Agricultural Research Outputs (CGSpace)
description Retrotransposons are the main components of eukaryotic genomes, representing up to 80% of some large plant genomes. These mobile elements transpose via a “copy and paste” mechanism, thus increasing their copy number while active. Their accumulation is now accepted as the main factor of genome size increase in higher eukaryotes, besides polyploidy. However, the dynamics of this process are poorly understood. In this study, we show that Oryza australiensis, a wild relative of the Asian cultivated rice O. sativa, has undergone recent bursts of three LTR-retrotransposon families. This genome has accumulated more than 90,000 retrotransposon copies during the last three million years, leading to a rapid twofold increase of its size. In addition, phenetic analyses of these retrotransposons clearly confirm that the genomic bursts occurred posterior to the radiation of the species. This provides direct evidence of retrotransposon-mediated variation of genome size within a plant genus.
format Journal Article
id CGSpace166565
institution CGIAR Consortium
language Inglés
publishDate 2006
publishDateRange 2006
publishDateSort 2006
publisher Cold Spring Harbor Laboratory
publisherStr Cold Spring Harbor Laboratory
record_format dspace
spelling CGSpace1665652024-12-19T14:13:28Z Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice Piegu, Benoit Guyot, Romain Picault, Nathalie Roulin, Anne Saniyal, Abhijit Kim, Hyeran Collura, Kristi Brar, Darshan S. Jackson, Scott Wing, Rod A. Panaud, Olivier genomes phenetics retrotransposons transposition wild relatives oryza australiensis Retrotransposons are the main components of eukaryotic genomes, representing up to 80% of some large plant genomes. These mobile elements transpose via a “copy and paste” mechanism, thus increasing their copy number while active. Their accumulation is now accepted as the main factor of genome size increase in higher eukaryotes, besides polyploidy. However, the dynamics of this process are poorly understood. In this study, we show that Oryza australiensis, a wild relative of the Asian cultivated rice O. sativa, has undergone recent bursts of three LTR-retrotransposon families. This genome has accumulated more than 90,000 retrotransposon copies during the last three million years, leading to a rapid twofold increase of its size. In addition, phenetic analyses of these retrotransposons clearly confirm that the genomic bursts occurred posterior to the radiation of the species. This provides direct evidence of retrotransposon-mediated variation of genome size within a plant genus. 2006-10 2024-12-19T12:56:23Z 2024-12-19T12:56:23Z Journal Article https://hdl.handle.net/10568/166565 en Cold Spring Harbor Laboratory Piegu, Benoit; Guyot, Romain; Picault, Nathalie; Roulin, Anne; Saniyal, Abhijit; Kim, Hyeran; Collura, Kristi; Brar, Darshan S.; Jackson, Scott; Wing, Rod A. and Panaud, Olivier. 2006. Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res., Volume 16 no. 10 p. 1262-1269
spellingShingle genomes
phenetics
retrotransposons
transposition
wild relatives
oryza australiensis
Piegu, Benoit
Guyot, Romain
Picault, Nathalie
Roulin, Anne
Saniyal, Abhijit
Kim, Hyeran
Collura, Kristi
Brar, Darshan S.
Jackson, Scott
Wing, Rod A.
Panaud, Olivier
Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice
title Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice
title_full Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice
title_fullStr Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice
title_full_unstemmed Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice
title_short Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice
title_sort doubling genome size without polyploidization dynamics of retrotransposition driven genomic expansions in oryza australiensis a wild relative of rice
topic genomes
phenetics
retrotransposons
transposition
wild relatives
oryza australiensis
url https://hdl.handle.net/10568/166565
work_keys_str_mv AT piegubenoit doublinggenomesizewithoutpolyploidizationdynamicsofretrotranspositiondrivengenomicexpansionsinoryzaaustraliensisawildrelativeofrice
AT guyotromain doublinggenomesizewithoutpolyploidizationdynamicsofretrotranspositiondrivengenomicexpansionsinoryzaaustraliensisawildrelativeofrice
AT picaultnathalie doublinggenomesizewithoutpolyploidizationdynamicsofretrotranspositiondrivengenomicexpansionsinoryzaaustraliensisawildrelativeofrice
AT roulinanne doublinggenomesizewithoutpolyploidizationdynamicsofretrotranspositiondrivengenomicexpansionsinoryzaaustraliensisawildrelativeofrice
AT saniyalabhijit doublinggenomesizewithoutpolyploidizationdynamicsofretrotranspositiondrivengenomicexpansionsinoryzaaustraliensisawildrelativeofrice
AT kimhyeran doublinggenomesizewithoutpolyploidizationdynamicsofretrotranspositiondrivengenomicexpansionsinoryzaaustraliensisawildrelativeofrice
AT collurakristi doublinggenomesizewithoutpolyploidizationdynamicsofretrotranspositiondrivengenomicexpansionsinoryzaaustraliensisawildrelativeofrice
AT brardarshans doublinggenomesizewithoutpolyploidizationdynamicsofretrotranspositiondrivengenomicexpansionsinoryzaaustraliensisawildrelativeofrice
AT jacksonscott doublinggenomesizewithoutpolyploidizationdynamicsofretrotranspositiondrivengenomicexpansionsinoryzaaustraliensisawildrelativeofrice
AT wingroda doublinggenomesizewithoutpolyploidizationdynamicsofretrotranspositiondrivengenomicexpansionsinoryzaaustraliensisawildrelativeofrice
AT panaudolivier doublinggenomesizewithoutpolyploidizationdynamicsofretrotranspositiondrivengenomicexpansionsinoryzaaustraliensisawildrelativeofrice