Highly specific gene silencing by artificial miRNAs in rice
Endogenous microRNAs (miRNAs) are potent negative regulators of gene expression in plants and animals. Artificial miRNAs (amiRNAs)–designed to target one or several genes of interest–provide a new and highly specific approach for effective post-transcriptional gene silencing (PTGS) in plants. We dev...
| Autores principales: | , , , , |
|---|---|
| Formato: | Journal Article |
| Lenguaje: | Inglés |
| Publicado: |
Public Library of Science
2008
|
| Materias: | |
| Acceso en línea: | https://hdl.handle.net/10568/166350 |
| _version_ | 1855533445326831616 |
|---|---|
| author | Warthmann, Norman Chen, Hao Ossowski, Stephan Weigel, Detlef Hervé, Philippe |
| author_browse | Chen, Hao Hervé, Philippe Ossowski, Stephan Warthmann, Norman Weigel, Detlef |
| author_facet | Warthmann, Norman Chen, Hao Ossowski, Stephan Weigel, Detlef Hervé, Philippe |
| author_sort | Warthmann, Norman |
| collection | Repository of Agricultural Research Outputs (CGSpace) |
| description | Endogenous microRNAs (miRNAs) are potent negative regulators of gene expression in plants and animals. Artificial miRNAs (amiRNAs)–designed to target one or several genes of interest–provide a new and highly specific approach for effective post-transcriptional gene silencing (PTGS) in plants. We devised an amiRNA-based strategy for both japonica and indica type strains of cultivated rice, Oryza sativa. Using an endogenous rice miRNA precursor and customized 21mers, we designed amiRNA constructs targeting three different genes (Pds, Spl11, and Eui1/CYP714D1). Upon constitutive expression of these amiRNAs in the varieties Nipponbare (japonica) and IR64 (indica), the targeted genes are down-regulated by amiRNA-guided cleavage of the transcripts, resulting in the expected mutant phenotypes. The effects are highly specific to the target gene, the transgenes are stably inherited and they remain effective in the progeny. Our results not only show that amiRNAs can efficiently trigger gene silencing in a monocot crop, but also that amiRNAs can effectively modulate agronomically important traits in varieties used in modern breeding programs. We provide all software tools and a protocol for the design of rice amiRNA constructs, which can be easily adapted to other crops. The approach is suited for candidate gene validation, comparative functional genomics between different varieties, and for improvement of agronomic performance and nutritional value. |
| format | Journal Article |
| id | CGSpace166350 |
| institution | CGIAR Consortium |
| language | Inglés |
| publishDate | 2008 |
| publishDateRange | 2008 |
| publishDateSort | 2008 |
| publisher | Public Library of Science |
| publisherStr | Public Library of Science |
| record_format | dspace |
| spelling | CGSpace1663502025-01-24T14:20:10Z Highly specific gene silencing by artificial miRNAs in rice Warthmann, Norman Chen, Hao Ossowski, Stephan Weigel, Detlef Hervé, Philippe genes gene expression gene silencing rna nucleotide sequences Endogenous microRNAs (miRNAs) are potent negative regulators of gene expression in plants and animals. Artificial miRNAs (amiRNAs)–designed to target one or several genes of interest–provide a new and highly specific approach for effective post-transcriptional gene silencing (PTGS) in plants. We devised an amiRNA-based strategy for both japonica and indica type strains of cultivated rice, Oryza sativa. Using an endogenous rice miRNA precursor and customized 21mers, we designed amiRNA constructs targeting three different genes (Pds, Spl11, and Eui1/CYP714D1). Upon constitutive expression of these amiRNAs in the varieties Nipponbare (japonica) and IR64 (indica), the targeted genes are down-regulated by amiRNA-guided cleavage of the transcripts, resulting in the expected mutant phenotypes. The effects are highly specific to the target gene, the transgenes are stably inherited and they remain effective in the progeny. Our results not only show that amiRNAs can efficiently trigger gene silencing in a monocot crop, but also that amiRNAs can effectively modulate agronomically important traits in varieties used in modern breeding programs. We provide all software tools and a protocol for the design of rice amiRNA constructs, which can be easily adapted to other crops. The approach is suited for candidate gene validation, comparative functional genomics between different varieties, and for improvement of agronomic performance and nutritional value. 2008-03-19 2024-12-19T12:56:09Z 2024-12-19T12:56:09Z Journal Article https://hdl.handle.net/10568/166350 en Open Access Public Library of Science Warthmann, Norman; Chen, Hao; Ossowski, Stephan; Weigel, Detlef and Hervé, Philippe. 2008. Highly specific gene silencing by artificial miRNAs in rice. PLoS ONE, Volume 3 no. 3 p. e1829 |
| spellingShingle | genes gene expression gene silencing rna nucleotide sequences Warthmann, Norman Chen, Hao Ossowski, Stephan Weigel, Detlef Hervé, Philippe Highly specific gene silencing by artificial miRNAs in rice |
| title | Highly specific gene silencing by artificial miRNAs in rice |
| title_full | Highly specific gene silencing by artificial miRNAs in rice |
| title_fullStr | Highly specific gene silencing by artificial miRNAs in rice |
| title_full_unstemmed | Highly specific gene silencing by artificial miRNAs in rice |
| title_short | Highly specific gene silencing by artificial miRNAs in rice |
| title_sort | highly specific gene silencing by artificial mirnas in rice |
| topic | genes gene expression gene silencing rna nucleotide sequences |
| url | https://hdl.handle.net/10568/166350 |
| work_keys_str_mv | AT warthmannnorman highlyspecificgenesilencingbyartificialmirnasinrice AT chenhao highlyspecificgenesilencingbyartificialmirnasinrice AT ossowskistephan highlyspecificgenesilencingbyartificialmirnasinrice AT weigeldetlef highlyspecificgenesilencingbyartificialmirnasinrice AT hervephilippe highlyspecificgenesilencingbyartificialmirnasinrice |