From ORYZA2000 to ORYZA (v3): An improved simulation model for rice in drought and nitrogen-deficient environments
The worldwide usage of and increasing citations for ORYZA2000 has established it as a robust and reliable ecophysiological model for predicting the growth and yield of rice in an irrigated lowland ecosystem. Because of its focus on irrigated lowlands, its computation ability is limited to the repres...
| Autores principales: | , , , , , , |
|---|---|
| Formato: | Journal Article |
| Lenguaje: | Inglés |
| Publicado: |
Elsevier
2017
|
| Materias: | |
| Acceso en línea: | https://hdl.handle.net/10568/165057 |
| _version_ | 1855521276416753664 |
|---|---|
| author | Li, Tao Angeles, Olivyn Marcaida, Manuel Manalo, Emmali Manalili, Mervin Pogs Radanielson, Ando Mohanty, Samarendu |
| author_browse | Angeles, Olivyn Li, Tao Manalili, Mervin Pogs Manalo, Emmali Marcaida, Manuel Mohanty, Samarendu Radanielson, Ando |
| author_facet | Li, Tao Angeles, Olivyn Marcaida, Manuel Manalo, Emmali Manalili, Mervin Pogs Radanielson, Ando Mohanty, Samarendu |
| author_sort | Li, Tao |
| collection | Repository of Agricultural Research Outputs (CGSpace) |
| description | The worldwide usage of and increasing citations for ORYZA2000 has established it as a robust and reliable ecophysiological model for predicting the growth and yield of rice in an irrigated lowland ecosystem. Because of its focus on irrigated lowlands, its computation ability is limited to the representation of the effects of the highly dynamic environments of upland, rainfed, and aerobic ecosystems on rice growth and yield. Additional modules and routines to quantify daily variations in soil temperature, carbon, nitrogen, and environmental stresses were then developed and integrated into ORYZA2000 to capture their effects on primary production, assimilate allocation, root growth, and water and nitrogen uptake. The newest version has been renamed “ORYZA version 3 (v3)”. Case studies have shown that the root mean square errors (RMSE) between simulated and measured values for total biomass and yields ranged from 11.2% to 16.6% across experiments in non-drought and drought and/or nitrogen-deficient environments. ORYZA (v3) showed a significant reduction of the RMSE by at least 20%, thereby improving the model’s capability to represent values measured under extreme conditions. It has also been significantly improved in representing the dynamics of soil water and crop leaf nitrogen contents. With an enhanced capability to simulate rice growth and development and predict yield in non-stressed, water-stressed and nitrogen-stressed environments, ORYZA (v3) is a reliable successor of ORYZA2000 |
| format | Journal Article |
| id | CGSpace165057 |
| institution | CGIAR Consortium |
| language | Inglés |
| publishDate | 2017 |
| publishDateRange | 2017 |
| publishDateSort | 2017 |
| publisher | Elsevier |
| publisherStr | Elsevier |
| record_format | dspace |
| spelling | CGSpace1650572025-03-06T21:52:58Z From ORYZA2000 to ORYZA (v3): An improved simulation model for rice in drought and nitrogen-deficient environments Li, Tao Angeles, Olivyn Marcaida, Manuel Manalo, Emmali Manalili, Mervin Pogs Radanielson, Ando Mohanty, Samarendu simulation crop modelling oryza rice cereals ecosystems farmland irrigated land irrigation yields crop yield environmental factors nitrogen nitrogen content carbon soil soil temperature water uptake drought roots drought stress water management agroecosystems nitrogen balance The worldwide usage of and increasing citations for ORYZA2000 has established it as a robust and reliable ecophysiological model for predicting the growth and yield of rice in an irrigated lowland ecosystem. Because of its focus on irrigated lowlands, its computation ability is limited to the representation of the effects of the highly dynamic environments of upland, rainfed, and aerobic ecosystems on rice growth and yield. Additional modules and routines to quantify daily variations in soil temperature, carbon, nitrogen, and environmental stresses were then developed and integrated into ORYZA2000 to capture their effects on primary production, assimilate allocation, root growth, and water and nitrogen uptake. The newest version has been renamed “ORYZA version 3 (v3)”. Case studies have shown that the root mean square errors (RMSE) between simulated and measured values for total biomass and yields ranged from 11.2% to 16.6% across experiments in non-drought and drought and/or nitrogen-deficient environments. ORYZA (v3) showed a significant reduction of the RMSE by at least 20%, thereby improving the model’s capability to represent values measured under extreme conditions. It has also been significantly improved in representing the dynamics of soil water and crop leaf nitrogen contents. With an enhanced capability to simulate rice growth and development and predict yield in non-stressed, water-stressed and nitrogen-stressed environments, ORYZA (v3) is a reliable successor of ORYZA2000 2017-05 2024-12-19T12:54:38Z 2024-12-19T12:54:38Z Journal Article https://hdl.handle.net/10568/165057 en Open Access Elsevier Li, Tao; Angeles, Olivyn; Marcaida, Manuel; Manalo, Emmali; Manalili, Mervin Pogs; Radanielson, Ando and Mohanty, Samarendu. 2017. From ORYZA2000 to ORYZA (v3): An improved simulation model for rice in drought and nitrogen-deficient environments. Agricultural and Forest Meteorology, Volume 237-238 p. 246-256. https://doi.org/10.1016/j.agrformet.2017.02.025 |
| spellingShingle | simulation crop modelling oryza rice cereals ecosystems farmland irrigated land irrigation yields crop yield environmental factors nitrogen nitrogen content carbon soil soil temperature water uptake drought roots drought stress water management agroecosystems nitrogen balance Li, Tao Angeles, Olivyn Marcaida, Manuel Manalo, Emmali Manalili, Mervin Pogs Radanielson, Ando Mohanty, Samarendu From ORYZA2000 to ORYZA (v3): An improved simulation model for rice in drought and nitrogen-deficient environments |
| title | From ORYZA2000 to ORYZA (v3): An improved simulation model for rice in drought and nitrogen-deficient environments |
| title_full | From ORYZA2000 to ORYZA (v3): An improved simulation model for rice in drought and nitrogen-deficient environments |
| title_fullStr | From ORYZA2000 to ORYZA (v3): An improved simulation model for rice in drought and nitrogen-deficient environments |
| title_full_unstemmed | From ORYZA2000 to ORYZA (v3): An improved simulation model for rice in drought and nitrogen-deficient environments |
| title_short | From ORYZA2000 to ORYZA (v3): An improved simulation model for rice in drought and nitrogen-deficient environments |
| title_sort | from oryza2000 to oryza v3 an improved simulation model for rice in drought and nitrogen deficient environments |
| topic | simulation crop modelling oryza rice cereals ecosystems farmland irrigated land irrigation yields crop yield environmental factors nitrogen nitrogen content carbon soil soil temperature water uptake drought roots drought stress water management agroecosystems nitrogen balance |
| url | https://hdl.handle.net/10568/165057 |
| work_keys_str_mv | AT litao fromoryza2000tooryzav3animprovedsimulationmodelforriceindroughtandnitrogendeficientenvironments AT angelesolivyn fromoryza2000tooryzav3animprovedsimulationmodelforriceindroughtandnitrogendeficientenvironments AT marcaidamanuel fromoryza2000tooryzav3animprovedsimulationmodelforriceindroughtandnitrogendeficientenvironments AT manaloemmali fromoryza2000tooryzav3animprovedsimulationmodelforriceindroughtandnitrogendeficientenvironments AT manalilimervinpogs fromoryza2000tooryzav3animprovedsimulationmodelforriceindroughtandnitrogendeficientenvironments AT radanielsonando fromoryza2000tooryzav3animprovedsimulationmodelforriceindroughtandnitrogendeficientenvironments AT mohantysamarendu fromoryza2000tooryzav3animprovedsimulationmodelforriceindroughtandnitrogendeficientenvironments |