Using Sentinel-1, Sentinel-2, and planet imagery to map crop type of smallholder farms
Remote sensing offers a way to map crop types across large spatio-temporal scales at low costs. However, mapping crop types is challenging in heterogeneous, smallholder farming systems, such as those in India, where field sizes are often smaller than the resolution of historically available imagery....
| Autores principales: | , , , , , , , |
|---|---|
| Formato: | Journal Article |
| Lenguaje: | Inglés |
| Publicado: |
MDPI
2021
|
| Materias: | |
| Acceso en línea: | https://hdl.handle.net/10568/164277 |
Ejemplares similares: Using Sentinel-1, Sentinel-2, and planet imagery to map crop type of smallholder farms
- Monitoring spatial-temporal variations of surface areas of small reservoirs in Ghana’s Upper East Region using Sentinel-2 satellite imagery and machine learning
- A machine learning algorithm for mapping small reservoirs using Sentinel-2 satellite imagery in Google Earth Engine
- Smallholder fields crop type mapping based on satellite imagery
- Ratoon rice mapping based on Sentinel-1 and Sentinel-2 imagery
- Discriminación de cultivos de verano en Coronel Pringles campaña 2025: imágenes satelitales sentinel-2A
- Synergy of Sentinel-1 and Sentinel-2 Time Series for Cloud-Free Vegetation Water Content Mapping with Multi-Output Gaussian Processes