Application of explainable AI techniques to site-specific and climate-smart management of maize systems in Colombia
Maize is essential for food security and income in Colombia, but its production faces challenges such as drought, waterlogging, heat stress, and inadequate agronomic practices. To improve production in the face of climate variability, it is crucial to optimize agronomic practices. This study analyze...
| Autores principales: | , , , , |
|---|---|
| Formato: | Informe técnico |
| Lenguaje: | Inglés |
| Publicado: |
2024
|
| Materias: | |
| Acceso en línea: | https://hdl.handle.net/10568/163489 |
Ejemplares similares: Application of explainable AI techniques to site-specific and climate-smart management of maize systems in Colombia
- Using explainable machine learning techniques to unpack farm-level management x climate interactions
- Foodgravity: understand food flows using classic gravity model and explainable artificial intelligence techniques
- Foodgravity: understand food flows using classic gravity model and explainable artificial intelligence techniques
- Machine learning technique unraveled subspecies-specific ionomic variation with the preferential mineral enrichment in rice
- Taller de fundamentos en análisis de información y minería de datos para agricultura (Big Data)
- Site-specific fertilizer recommendation using data driven machine approaches enhanced wheat productivity and resource use efficiency