Dataset: Census of individual trees of Tucunare Vichada (2020)

This dataset contains information of individual trees in Tucunare, Vichada-Colombia extracted from remote sensing imagery processed using AI models. Information from the High Resolution 1-meter Global Canopy Heights map from Meta-AI. The dataset includes a CSV file containing attributes related to t...

Descripción completa

Detalles Bibliográficos
Autores principales: Ruiz-Hurtado, Andres Felipe, Pérez Bolaños, Juliana, Arrechea-Castillo, Darwin Alexis, Matiz Rubio, Natalia, Costa Junior, Ciniro, Arango Mejia, Jacobo, Cardoso Arango, Juan Andres
Formato: Conjunto de datos
Lenguaje:Inglés
Publicado: 2024
Materias:
Acceso en línea:https://hdl.handle.net/10568/163200
_version_ 1855533267917209600
author Ruiz-Hurtado, Andres Felipe
Pérez Bolaños, Juliana
Arrechea-Castillo, Darwin Alexis
Matiz Rubio, Natalia
Costa Junior, Ciniro
Arango Mejia, Jacobo
Cardoso Arango, Juan Andres
author_browse Arango Mejia, Jacobo
Arrechea-Castillo, Darwin Alexis
Cardoso Arango, Juan Andres
Costa Junior, Ciniro
Matiz Rubio, Natalia
Pérez Bolaños, Juliana
Ruiz-Hurtado, Andres Felipe
author_facet Ruiz-Hurtado, Andres Felipe
Pérez Bolaños, Juliana
Arrechea-Castillo, Darwin Alexis
Matiz Rubio, Natalia
Costa Junior, Ciniro
Arango Mejia, Jacobo
Cardoso Arango, Juan Andres
author_sort Ruiz-Hurtado, Andres Felipe
collection Repository of Agricultural Research Outputs (CGSpace)
description This dataset contains information of individual trees in Tucunare, Vichada-Colombia extracted from remote sensing imagery processed using AI models. Information from the High Resolution 1-meter Global Canopy Heights map from Meta-AI. The dataset includes a CSV file containing attributes related to tree dimensions and geolocation and a shapefile with polygons representing each tree Metodology:Tree information was obtained by leveraging the High-Resolution 1 m Global Canopy Height map generated by Meta's AI model, trained on a large dataset of satellite images and LIDAR data, to predict canopy heights with a mean absolute error of 2.8 meters. The map tiles were downloaded from Amazon Web Services (AWS) S3 Bucket and processed using additional steps: merging and clipping tiles to cover the region of interest of Tucunare, vectorizing, filtering, and georeferencing individual trees to derive attributes like area, perimeter, equivalent diameter, and circularity representing the visual crown of each tree, and finally applying zonal statistics to assign tree height values. The resulting vector layer contains detailed tree metrics, supporting advanced canopy analysis.
format Conjunto de datos
id CGSpace163200
institution CGIAR Consortium
language Inglés
publishDate 2024
publishDateRange 2024
publishDateSort 2024
record_format dspace
spelling CGSpace1632002025-06-03T13:34:56Z Dataset: Census of individual trees of Tucunare Vichada (2020) Ruiz-Hurtado, Andres Felipe Pérez Bolaños, Juliana Arrechea-Castillo, Darwin Alexis Matiz Rubio, Natalia Costa Junior, Ciniro Arango Mejia, Jacobo Cardoso Arango, Juan Andres remote sensing artificial intelligence This dataset contains information of individual trees in Tucunare, Vichada-Colombia extracted from remote sensing imagery processed using AI models. Information from the High Resolution 1-meter Global Canopy Heights map from Meta-AI. The dataset includes a CSV file containing attributes related to tree dimensions and geolocation and a shapefile with polygons representing each tree Metodology:Tree information was obtained by leveraging the High-Resolution 1 m Global Canopy Height map generated by Meta's AI model, trained on a large dataset of satellite images and LIDAR data, to predict canopy heights with a mean absolute error of 2.8 meters. The map tiles were downloaded from Amazon Web Services (AWS) S3 Bucket and processed using additional steps: merging and clipping tiles to cover the region of interest of Tucunare, vectorizing, filtering, and georeferencing individual trees to derive attributes like area, perimeter, equivalent diameter, and circularity representing the visual crown of each tree, and finally applying zonal statistics to assign tree height values. The resulting vector layer contains detailed tree metrics, supporting advanced canopy analysis. 2024 2024-12-09T07:55:49Z 2024-12-09T07:55:49Z Dataset https://hdl.handle.net/10568/163200 en Open Access Ruiz Hurtado, A.F.; Perez Bolanos, J.; Arrechea Castillo, D.A.; Matiz Rubio, N.; Costa Junior, C.; Arango Mejia, J.; Cardoso Arango, J.A. (2024) Dataset: Census of individual trees of Tucunare Vichada (2020). https://doi.org/10.7910/DVN/RTO8MM
spellingShingle remote sensing
artificial intelligence
Ruiz-Hurtado, Andres Felipe
Pérez Bolaños, Juliana
Arrechea-Castillo, Darwin Alexis
Matiz Rubio, Natalia
Costa Junior, Ciniro
Arango Mejia, Jacobo
Cardoso Arango, Juan Andres
Dataset: Census of individual trees of Tucunare Vichada (2020)
title Dataset: Census of individual trees of Tucunare Vichada (2020)
title_full Dataset: Census of individual trees of Tucunare Vichada (2020)
title_fullStr Dataset: Census of individual trees of Tucunare Vichada (2020)
title_full_unstemmed Dataset: Census of individual trees of Tucunare Vichada (2020)
title_short Dataset: Census of individual trees of Tucunare Vichada (2020)
title_sort dataset census of individual trees of tucunare vichada 2020
topic remote sensing
artificial intelligence
url https://hdl.handle.net/10568/163200
work_keys_str_mv AT ruizhurtadoandresfelipe datasetcensusofindividualtreesoftucunarevichada2020
AT perezbolanosjuliana datasetcensusofindividualtreesoftucunarevichada2020
AT arrecheacastillodarwinalexis datasetcensusofindividualtreesoftucunarevichada2020
AT matizrubionatalia datasetcensusofindividualtreesoftucunarevichada2020
AT costajuniorciniro datasetcensusofindividualtreesoftucunarevichada2020
AT arangomejiajacobo datasetcensusofindividualtreesoftucunarevichada2020
AT cardosoarangojuanandres datasetcensusofindividualtreesoftucunarevichada2020