AI-powered detection and quantification of Post-harvest Physiological Deterioration (PPD) in cassava using YOLO foundation models and K-means clustering

Post-harvest physiological deterioration (PPD) poses a significant challenge to the cassava industry, leading to substantial economic losses. This study aims to address this issue by developing a comprehensive framework in collaboration with cassava breeders. Advanced deep learning (DL) techniques s...

Descripción completa

Detalles Bibliográficos
Autores principales: Gomez Ayalde, Daniela, Giraldo Londono, Juan Camilo, Quiroga Mosquera, Audberto, Luna-Melendez, Jorge Luis, Gimode, Winnie, Tran, Thierry, Zhang, Xiaofei, Selvaraj, Michael Gomez
Formato: Journal Article
Lenguaje:Inglés
Publicado: BioMed Central 2024
Materias:
Acceso en línea:https://hdl.handle.net/10568/162791

Ejemplares similares: AI-powered detection and quantification of Post-harvest Physiological Deterioration (PPD) in cassava using YOLO foundation models and K-means clustering