A quantitative computational framework for allopolyploid single-cell data integration and core gene ranking in development

Polyploidization drives regulatory and phenotypic innovation. How the merger of different genomes contributes to polyploid development is a fundamental issue in evolutionary developmental biology and breeding research. Clarifying this issue is challenging because of genome complexity and the difficu...

Descripción completa

Detalles Bibliográficos
Autores principales: Meiyue Wang, Zijuan Li, Haoyu Wang, Junwei Zhao, Yuyun Zhang, Kande Lin, Shusong Zheng, Yilong Feng, Yu'e Zhang, Wan Teng, Yiping Tong, Wenli Zhang, Yongbiao Xue, Hude Mao, Hao Li, Bo Zhang, Awais Rasheed, Bhavani, Sridhar, Chenghong Liu, Hong-Qing Ling, Yue-Qing Hu, Yijing Zhang
Formato: Journal Article
Lenguaje:Inglés
Publicado: Oxford University Press 2024
Materias:
Acceso en línea:https://hdl.handle.net/10568/162570
_version_ 1855538404905713664
author Meiyue Wang
Zijuan Li
Haoyu Wang
Junwei Zhao
Yuyun Zhang
Kande Lin
Shusong Zheng
Yilong Feng
Yu'e Zhang
Wan Teng
Yiping Tong
Wenli Zhang
Yongbiao Xue
Hude Mao
Hao Li
Bo Zhang
Awais Rasheed
Bhavani, Sridhar
Chenghong Liu
Hong-Qing Ling
Yue-Qing Hu
Yijing Zhang
author_browse Awais Rasheed
Bhavani, Sridhar
Bo Zhang
Chenghong Liu
Hao Li
Haoyu Wang
Hong-Qing Ling
Hude Mao
Junwei Zhao
Kande Lin
Meiyue Wang
Shusong Zheng
Wan Teng
Wenli Zhang
Yijing Zhang
Yilong Feng
Yiping Tong
Yongbiao Xue
Yu'e Zhang
Yue-Qing Hu
Yuyun Zhang
Zijuan Li
author_facet Meiyue Wang
Zijuan Li
Haoyu Wang
Junwei Zhao
Yuyun Zhang
Kande Lin
Shusong Zheng
Yilong Feng
Yu'e Zhang
Wan Teng
Yiping Tong
Wenli Zhang
Yongbiao Xue
Hude Mao
Hao Li
Bo Zhang
Awais Rasheed
Bhavani, Sridhar
Chenghong Liu
Hong-Qing Ling
Yue-Qing Hu
Yijing Zhang
author_sort Meiyue Wang
collection Repository of Agricultural Research Outputs (CGSpace)
description Polyploidization drives regulatory and phenotypic innovation. How the merger of different genomes contributes to polyploid development is a fundamental issue in evolutionary developmental biology and breeding research. Clarifying this issue is challenging because of genome complexity and the difficulty in tracking stochastic subgenome divergence during development. Recent single-cell sequencing techniques enabled probing subgenome-divergent regulation in the context of cellular differentiation. However, analyzing single-cell data suffers from high error rates due to high dimensionality, noise, and sparsity, and the errors stack up in polyploid analysis due to the increased dimensionality of comparisons between subgenomes of each cell, hindering deeper mechanistic understandings. In this study, we develop a quantitative computational framework, called "pseudo-genome divergence quantification" (pgDQ), for quantifying and tracking subgenome divergence directly at the cellular level. Further comparing with cellular differentiation trajectories derived from single-cell RNA sequencing data allows for an examination of the relationship between subgenome divergence and the progression of development. pgDQ produces robust results and is insensitive to data dropout and noise, avoiding high error rates due to multiple comparisons of genes, cells, and subgenomes. A statistical diagnostic approach is proposed to identify genes that are central to subgenome divergence during development, which facilitates the integration of different data modalities, enabling the identification of factors and pathways that mediate subgenome-divergent activity during development. Case studies have demonstrated that applying pgDQ to single-cell and bulk tissue transcriptomic data promotes a systematic and deeper understanding of how dynamic subgenome divergence contributes to developmental trajectories in polyploid evolution.
format Journal Article
id CGSpace162570
institution CGIAR Consortium
language Inglés
publishDate 2024
publishDateRange 2024
publishDateSort 2024
publisher Oxford University Press
publisherStr Oxford University Press
record_format dspace
spelling CGSpace1625702025-10-26T12:55:42Z A quantitative computational framework for allopolyploid single-cell data integration and core gene ranking in development Meiyue Wang Zijuan Li Haoyu Wang Junwei Zhao Yuyun Zhang Kande Lin Shusong Zheng Yilong Feng Yu'e Zhang Wan Teng Yiping Tong Wenli Zhang Yongbiao Xue Hude Mao Hao Li Bo Zhang Awais Rasheed Bhavani, Sridhar Chenghong Liu Hong-Qing Ling Yue-Qing Hu Yijing Zhang RNA sequence genetic variation evolution Polyploidization drives regulatory and phenotypic innovation. How the merger of different genomes contributes to polyploid development is a fundamental issue in evolutionary developmental biology and breeding research. Clarifying this issue is challenging because of genome complexity and the difficulty in tracking stochastic subgenome divergence during development. Recent single-cell sequencing techniques enabled probing subgenome-divergent regulation in the context of cellular differentiation. However, analyzing single-cell data suffers from high error rates due to high dimensionality, noise, and sparsity, and the errors stack up in polyploid analysis due to the increased dimensionality of comparisons between subgenomes of each cell, hindering deeper mechanistic understandings. In this study, we develop a quantitative computational framework, called "pseudo-genome divergence quantification" (pgDQ), for quantifying and tracking subgenome divergence directly at the cellular level. Further comparing with cellular differentiation trajectories derived from single-cell RNA sequencing data allows for an examination of the relationship between subgenome divergence and the progression of development. pgDQ produces robust results and is insensitive to data dropout and noise, avoiding high error rates due to multiple comparisons of genes, cells, and subgenomes. A statistical diagnostic approach is proposed to identify genes that are central to subgenome divergence during development, which facilitates the integration of different data modalities, enabling the identification of factors and pathways that mediate subgenome-divergent activity during development. Case studies have demonstrated that applying pgDQ to single-cell and bulk tissue transcriptomic data promotes a systematic and deeper understanding of how dynamic subgenome divergence contributes to developmental trajectories in polyploid evolution. 2024-09-04 2024-11-21T20:50:09Z 2024-11-21T20:50:09Z Journal Article https://hdl.handle.net/10568/162570 en Open Access application/pdf Oxford University Press Wang, M., Li, Z., Wang, H., Lin, K., Zheng, S., Feng, Y., Teng, W., Tong, Y., Zhang, W., Liu, C., Ling, H., Hu, Y., & Zhang, Y. (2024). A quantitative computational framework for allopolyploid single-cell data integration and core gene ranking in development. Molecular Biology And Evolution, 41(9), msae178. https://doi.org/10.1093/molbev/msae178
spellingShingle RNA sequence
genetic variation
evolution
Meiyue Wang
Zijuan Li
Haoyu Wang
Junwei Zhao
Yuyun Zhang
Kande Lin
Shusong Zheng
Yilong Feng
Yu'e Zhang
Wan Teng
Yiping Tong
Wenli Zhang
Yongbiao Xue
Hude Mao
Hao Li
Bo Zhang
Awais Rasheed
Bhavani, Sridhar
Chenghong Liu
Hong-Qing Ling
Yue-Qing Hu
Yijing Zhang
A quantitative computational framework for allopolyploid single-cell data integration and core gene ranking in development
title A quantitative computational framework for allopolyploid single-cell data integration and core gene ranking in development
title_full A quantitative computational framework for allopolyploid single-cell data integration and core gene ranking in development
title_fullStr A quantitative computational framework for allopolyploid single-cell data integration and core gene ranking in development
title_full_unstemmed A quantitative computational framework for allopolyploid single-cell data integration and core gene ranking in development
title_short A quantitative computational framework for allopolyploid single-cell data integration and core gene ranking in development
title_sort quantitative computational framework for allopolyploid single cell data integration and core gene ranking in development
topic RNA sequence
genetic variation
evolution
url https://hdl.handle.net/10568/162570
work_keys_str_mv AT meiyuewang aquantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT zijuanli aquantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT haoyuwang aquantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT junweizhao aquantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT yuyunzhang aquantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT kandelin aquantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT shusongzheng aquantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT yilongfeng aquantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT yuezhang aquantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT wanteng aquantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT yipingtong aquantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT wenlizhang aquantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT yongbiaoxue aquantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT hudemao aquantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT haoli aquantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT bozhang aquantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT awaisrasheed aquantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT bhavanisridhar aquantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT chenghongliu aquantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT hongqingling aquantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT yueqinghu aquantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT yijingzhang aquantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT meiyuewang quantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT zijuanli quantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT haoyuwang quantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT junweizhao quantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT yuyunzhang quantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT kandelin quantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT shusongzheng quantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT yilongfeng quantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT yuezhang quantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT wanteng quantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT yipingtong quantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT wenlizhang quantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT yongbiaoxue quantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT hudemao quantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT haoli quantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT bozhang quantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT awaisrasheed quantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT bhavanisridhar quantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT chenghongliu quantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT hongqingling quantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT yueqinghu quantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment
AT yijingzhang quantitativecomputationalframeworkforallopolyploidsinglecelldataintegrationandcoregenerankingindevelopment