GA-GBLUP: leveraging the genetic algorithm to improve the predictability of genomic selection

Genomic selection (GS) has emerged as an effective technology to accelerate crop hybrid breeding by enabling early selection prior to phenotype collection. Genomic best linear unbiased prediction (GBLUP) is a robust method that has been routinely used in GS breeding programs. However, GBLUP assumes...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang Xu, Yuxiang Zhang, Yanru Cui, Kai Zhou, Guangning Yu, Wenyan Yang, Xin Wang, Furong Li, Xiusheng Guan, Xuecai Zhang, Zefeng Yang, Shizhong Xu, Chenwu Xu
Formato: Journal Article
Lenguaje:Inglés
Publicado: Oxford University Press 2024
Materias:
Acceso en línea:https://hdl.handle.net/10568/162555
_version_ 1855530649003229184
author Yang Xu
Yuxiang Zhang
Yanru Cui
Kai Zhou
Guangning Yu
Wenyan Yang
Xin Wang
Furong Li
Xiusheng Guan
Xuecai Zhang
Zefeng Yang
Shizhong Xu
Chenwu Xu
author_browse Chenwu Xu
Furong Li
Guangning Yu
Kai Zhou
Shizhong Xu
Wenyan Yang
Xin Wang
Xiusheng Guan
Xuecai Zhang
Yang Xu
Yanru Cui
Yuxiang Zhang
Zefeng Yang
author_facet Yang Xu
Yuxiang Zhang
Yanru Cui
Kai Zhou
Guangning Yu
Wenyan Yang
Xin Wang
Furong Li
Xiusheng Guan
Xuecai Zhang
Zefeng Yang
Shizhong Xu
Chenwu Xu
author_sort Yang Xu
collection Repository of Agricultural Research Outputs (CGSpace)
description Genomic selection (GS) has emerged as an effective technology to accelerate crop hybrid breeding by enabling early selection prior to phenotype collection. Genomic best linear unbiased prediction (GBLUP) is a robust method that has been routinely used in GS breeding programs. However, GBLUP assumes that markers contribute equally to the total genetic variance, which may not be the case. In this study, we developed a novel GS method called GA-GBLUP that leverages the genetic algorithm (GA) to select markers related to the target trait. We defined four fitness functions for optimization, including AIC, BIC, R2, and HAT, to improve the predictability and bin adjacent markers based on the principle of linkage disequilibrium to reduce model dimension. The results demonstrate that the GA-GBLUP model, equipped with R2 and HAT fitness function, produces much higher predictability than GBLUP for most traits in rice and maize datasets, particularly for traits with low heritability. Moreover, we have developed a user-friendly R package, GAGBLUP, for GS, and the package is freely available on CRAN (https://CRAN.R-project.org/package=GAGBLUP).
format Journal Article
id CGSpace162555
institution CGIAR Consortium
language Inglés
publishDate 2024
publishDateRange 2024
publishDateSort 2024
publisher Oxford University Press
publisherStr Oxford University Press
record_format dspace
spelling CGSpace1625552025-12-08T10:06:44Z GA-GBLUP: leveraging the genetic algorithm to improve the predictability of genomic selection Yang Xu Yuxiang Zhang Yanru Cui Kai Zhou Guangning Yu Wenyan Yang Xin Wang Furong Li Xiusheng Guan Xuecai Zhang Zefeng Yang Shizhong Xu Chenwu Xu genetics algorithms marker-assisted selection Genomic selection (GS) has emerged as an effective technology to accelerate crop hybrid breeding by enabling early selection prior to phenotype collection. Genomic best linear unbiased prediction (GBLUP) is a robust method that has been routinely used in GS breeding programs. However, GBLUP assumes that markers contribute equally to the total genetic variance, which may not be the case. In this study, we developed a novel GS method called GA-GBLUP that leverages the genetic algorithm (GA) to select markers related to the target trait. We defined four fitness functions for optimization, including AIC, BIC, R2, and HAT, to improve the predictability and bin adjacent markers based on the principle of linkage disequilibrium to reduce model dimension. The results demonstrate that the GA-GBLUP model, equipped with R2 and HAT fitness function, produces much higher predictability than GBLUP for most traits in rice and maize datasets, particularly for traits with low heritability. Moreover, we have developed a user-friendly R package, GAGBLUP, for GS, and the package is freely available on CRAN (https://CRAN.R-project.org/package=GAGBLUP). 2024-07-25 2024-11-21T17:21:30Z 2024-11-21T17:21:30Z Journal Article https://hdl.handle.net/10568/162555 en Open Access application/pdf Oxford University Press Xu, Y., Zhang, Y., Cui, Y., Zhou, K., Yu, G., Yang, W., Wang, X., Li, F., Guan, X., Zhang, X., Yang, Z., Xu, S., & Xu, C. (2024). GA-GBLUP: leveraging the genetic algorithm to improve the predictability of genomic selection. Briefings in Bioinformatics, 25(5), bbae385. https://doi.org/10.1093/bib/bbae385
spellingShingle genetics
algorithms
marker-assisted selection
Yang Xu
Yuxiang Zhang
Yanru Cui
Kai Zhou
Guangning Yu
Wenyan Yang
Xin Wang
Furong Li
Xiusheng Guan
Xuecai Zhang
Zefeng Yang
Shizhong Xu
Chenwu Xu
GA-GBLUP: leveraging the genetic algorithm to improve the predictability of genomic selection
title GA-GBLUP: leveraging the genetic algorithm to improve the predictability of genomic selection
title_full GA-GBLUP: leveraging the genetic algorithm to improve the predictability of genomic selection
title_fullStr GA-GBLUP: leveraging the genetic algorithm to improve the predictability of genomic selection
title_full_unstemmed GA-GBLUP: leveraging the genetic algorithm to improve the predictability of genomic selection
title_short GA-GBLUP: leveraging the genetic algorithm to improve the predictability of genomic selection
title_sort ga gblup leveraging the genetic algorithm to improve the predictability of genomic selection
topic genetics
algorithms
marker-assisted selection
url https://hdl.handle.net/10568/162555
work_keys_str_mv AT yangxu gagblupleveragingthegeneticalgorithmtoimprovethepredictabilityofgenomicselection
AT yuxiangzhang gagblupleveragingthegeneticalgorithmtoimprovethepredictabilityofgenomicselection
AT yanrucui gagblupleveragingthegeneticalgorithmtoimprovethepredictabilityofgenomicselection
AT kaizhou gagblupleveragingthegeneticalgorithmtoimprovethepredictabilityofgenomicselection
AT guangningyu gagblupleveragingthegeneticalgorithmtoimprovethepredictabilityofgenomicselection
AT wenyanyang gagblupleveragingthegeneticalgorithmtoimprovethepredictabilityofgenomicselection
AT xinwang gagblupleveragingthegeneticalgorithmtoimprovethepredictabilityofgenomicselection
AT furongli gagblupleveragingthegeneticalgorithmtoimprovethepredictabilityofgenomicselection
AT xiushengguan gagblupleveragingthegeneticalgorithmtoimprovethepredictabilityofgenomicselection
AT xuecaizhang gagblupleveragingthegeneticalgorithmtoimprovethepredictabilityofgenomicselection
AT zefengyang gagblupleveragingthegeneticalgorithmtoimprovethepredictabilityofgenomicselection
AT shizhongxu gagblupleveragingthegeneticalgorithmtoimprovethepredictabilityofgenomicselection
AT chenwuxu gagblupleveragingthegeneticalgorithmtoimprovethepredictabilityofgenomicselection