A Bayesian optimization R package for multitrait parental selection

Selecting and mating parents in conventional phenotypic and genomic selection are crucial. Plant breeding programs aim to improve the economic value of crops, considering multiple traits simultaneously. When traits are negatively correlated and/or when there are missing records in some traits, selec...

Descripción completa

Detalles Bibliográficos
Autores principales: Villar-Hernandez, Bartolo de J., Dreisigacker, Susanne, Crespo-Herrera, Leonardo A., Perez-Rodriguez, Paulino, Perez-Elizalde, Sergio, Toledo, Fernando H., Crossa, José
Formato: Journal Article
Lenguaje:Inglés
Publicado: Wiley 2024
Materias:
Acceso en línea:https://hdl.handle.net/10568/162514
_version_ 1855522068301348864
author Villar-Hernandez, Bartolo de J.
Dreisigacker, Susanne
Crespo-Herrera, Leonardo A.
Perez-Rodriguez, Paulino
Perez-Elizalde, Sergio
Toledo, Fernando H.
Crossa, José
author_browse Crespo-Herrera, Leonardo A.
Crossa, José
Dreisigacker, Susanne
Perez-Elizalde, Sergio
Perez-Rodriguez, Paulino
Toledo, Fernando H.
Villar-Hernandez, Bartolo de J.
author_facet Villar-Hernandez, Bartolo de J.
Dreisigacker, Susanne
Crespo-Herrera, Leonardo A.
Perez-Rodriguez, Paulino
Perez-Elizalde, Sergio
Toledo, Fernando H.
Crossa, José
author_sort Villar-Hernandez, Bartolo de J.
collection Repository of Agricultural Research Outputs (CGSpace)
description Selecting and mating parents in conventional phenotypic and genomic selection are crucial. Plant breeding programs aim to improve the economic value of crops, considering multiple traits simultaneously. When traits are negatively correlated and/or when there are missing records in some traits, selection becomes more complex. To address this problem, we propose a multitrait selection approach using the Multitrait Parental Selection (MPS) R package—an efficient tool for genetic improvement, precision breeding, and conservation genetics. The package employs Bayesian optimization algorithms and three loss functions (Kullback–Leibler, Energy Score, and Multivariate Asymmetric Loss) to identify parental candidates with desirable traits. The software's functionality includes three main functions—EvalMPS, FastMPS, and ApproxMPS—catering to different data availability scenarios. Through the presented application examples, the MPS R package proves effective in multitrait genomic selection, enabling breeders to make informed decisions and achieve strong performance across multiple traits.
format Journal Article
id CGSpace162514
institution CGIAR Consortium
language Inglés
publishDate 2024
publishDateRange 2024
publishDateSort 2024
publisher Wiley
publisherStr Wiley
record_format dspace
spelling CGSpace1625142025-12-08T10:11:39Z A Bayesian optimization R package for multitrait parental selection Villar-Hernandez, Bartolo de J. Dreisigacker, Susanne Crespo-Herrera, Leonardo A. Perez-Rodriguez, Paulino Perez-Elizalde, Sergio Toledo, Fernando H. Crossa, José bayesian theory marker-assisted selection breeding programmes databases Selecting and mating parents in conventional phenotypic and genomic selection are crucial. Plant breeding programs aim to improve the economic value of crops, considering multiple traits simultaneously. When traits are negatively correlated and/or when there are missing records in some traits, selection becomes more complex. To address this problem, we propose a multitrait selection approach using the Multitrait Parental Selection (MPS) R package—an efficient tool for genetic improvement, precision breeding, and conservation genetics. The package employs Bayesian optimization algorithms and three loss functions (Kullback–Leibler, Energy Score, and Multivariate Asymmetric Loss) to identify parental candidates with desirable traits. The software's functionality includes three main functions—EvalMPS, FastMPS, and ApproxMPS—catering to different data availability scenarios. Through the presented application examples, the MPS R package proves effective in multitrait genomic selection, enabling breeders to make informed decisions and achieve strong performance across multiple traits. 2024-06 2024-11-21T14:18:21Z 2024-11-21T14:18:21Z Journal Article https://hdl.handle.net/10568/162514 en Open Access application/pdf Wiley Villar-Hernández, B. J., Dreisigacker, S., Crespo Herrera, L. A., Pérez‐Rodríguez, P., Pérez‐Elizalde, S., Toledo, F., & Crossa, J. (2024). A Bayesian optimization R package for multitrait parental selection. The Plant Genome, e20433. https://doi.org/10.1002/tpg2.20433
spellingShingle bayesian theory
marker-assisted selection
breeding programmes
databases
Villar-Hernandez, Bartolo de J.
Dreisigacker, Susanne
Crespo-Herrera, Leonardo A.
Perez-Rodriguez, Paulino
Perez-Elizalde, Sergio
Toledo, Fernando H.
Crossa, José
A Bayesian optimization R package for multitrait parental selection
title A Bayesian optimization R package for multitrait parental selection
title_full A Bayesian optimization R package for multitrait parental selection
title_fullStr A Bayesian optimization R package for multitrait parental selection
title_full_unstemmed A Bayesian optimization R package for multitrait parental selection
title_short A Bayesian optimization R package for multitrait parental selection
title_sort bayesian optimization r package for multitrait parental selection
topic bayesian theory
marker-assisted selection
breeding programmes
databases
url https://hdl.handle.net/10568/162514
work_keys_str_mv AT villarhernandezbartolodej abayesianoptimizationrpackageformultitraitparentalselection
AT dreisigackersusanne abayesianoptimizationrpackageformultitraitparentalselection
AT crespoherreraleonardoa abayesianoptimizationrpackageformultitraitparentalselection
AT perezrodriguezpaulino abayesianoptimizationrpackageformultitraitparentalselection
AT perezelizaldesergio abayesianoptimizationrpackageformultitraitparentalselection
AT toledofernandoh abayesianoptimizationrpackageformultitraitparentalselection
AT crossajose abayesianoptimizationrpackageformultitraitparentalselection
AT villarhernandezbartolodej bayesianoptimizationrpackageformultitraitparentalselection
AT dreisigackersusanne bayesianoptimizationrpackageformultitraitparentalselection
AT crespoherreraleonardoa bayesianoptimizationrpackageformultitraitparentalselection
AT perezrodriguezpaulino bayesianoptimizationrpackageformultitraitparentalselection
AT perezelizaldesergio bayesianoptimizationrpackageformultitraitparentalselection
AT toledofernandoh bayesianoptimizationrpackageformultitraitparentalselection
AT crossajose bayesianoptimizationrpackageformultitraitparentalselection