Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification

Maize is the dominant subsistence crop in much of sub-Saharan Africa and the Americas, where 17 to 30 percent of children under age 5 are vitamin A deficient. Diet diversification, food fortification, and supplementation have all been used to combat dietary micronutrient deficiencies. However, diet...

Full description

Bibliographic Details
Main Authors: Harjes, Carlos E., Rocheford, Torbert R., Bai, Ling, Brutnell, Thomas R., Kandianis, Catherine Bermudez, Sowinski, Stephen G., Stapleton, Ann E., Vallabhaneni, Ratnakar, Williams, Mark, Wurtzel, Eleanore T., Yan, Jianbing, Buckler, Edward S.
Format: Artículo preliminar
Language:Inglés
Published: International Food Policy Research Institute 2008
Subjects:
Online Access:https://hdl.handle.net/10568/161736
_version_ 1855536279411752960
author Harjes, Carlos E.
Rocheford, Torbert R.
Bai, Ling
Brutnell, Thomas R.
Kandianis, Catherine Bermudez
Sowinski, Stephen G.
Stapleton, Ann E.
Vallabhaneni, Ratnakar
Williams, Mark
Wurtzel, Eleanore T.
Yan, Jianbing
Buckler, Edward S.
author_browse Bai, Ling
Brutnell, Thomas R.
Buckler, Edward S.
Harjes, Carlos E.
Kandianis, Catherine Bermudez
Rocheford, Torbert R.
Sowinski, Stephen G.
Stapleton, Ann E.
Vallabhaneni, Ratnakar
Williams, Mark
Wurtzel, Eleanore T.
Yan, Jianbing
author_facet Harjes, Carlos E.
Rocheford, Torbert R.
Bai, Ling
Brutnell, Thomas R.
Kandianis, Catherine Bermudez
Sowinski, Stephen G.
Stapleton, Ann E.
Vallabhaneni, Ratnakar
Williams, Mark
Wurtzel, Eleanore T.
Yan, Jianbing
Buckler, Edward S.
author_sort Harjes, Carlos E.
collection Repository of Agricultural Research Outputs (CGSpace)
description Maize is the dominant subsistence crop in much of sub-Saharan Africa and the Americas, where 17 to 30 percent of children under age 5 are vitamin A deficient. Diet diversification, food fortification, and supplementation have all been used to combat dietary micronutrient deficiencies. However, diet diversification is often limited by crop seasonality, expense, and low bioavailability of green leafy plant carotenoids. In addition, poor infrastructure has limited widespread use of direct vitamin supplementation. Perhaps the most feasible approach, therefore, is biofortification, a process by which staple crops are purposefully bred for higher nutritional density. Biofortified foods could potentially be an inexpensive, locally adaptable, and long?term solution to diet deficiencies.
format Artículo preliminar
id CGSpace161736
institution CGIAR Consortium
language Inglés
publishDate 2008
publishDateRange 2008
publishDateSort 2008
publisher International Food Policy Research Institute
publisherStr International Food Policy Research Institute
record_format dspace
spelling CGSpace1617362025-11-06T03:48:07Z Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification Harjes, Carlos E. Rocheford, Torbert R. Bai, Ling Brutnell, Thomas R. Kandianis, Catherine Bermudez Sowinski, Stephen G. Stapleton, Ann E. Vallabhaneni, Ratnakar Williams, Mark Wurtzel, Eleanore T. Yan, Jianbing Buckler, Edward S. maize plant breeding nutrition malnutrition micronutrient deficiencies trace elements biofortification Maize is the dominant subsistence crop in much of sub-Saharan Africa and the Americas, where 17 to 30 percent of children under age 5 are vitamin A deficient. Diet diversification, food fortification, and supplementation have all been used to combat dietary micronutrient deficiencies. However, diet diversification is often limited by crop seasonality, expense, and low bioavailability of green leafy plant carotenoids. In addition, poor infrastructure has limited widespread use of direct vitamin supplementation. Perhaps the most feasible approach, therefore, is biofortification, a process by which staple crops are purposefully bred for higher nutritional density. Biofortified foods could potentially be an inexpensive, locally adaptable, and long?term solution to diet deficiencies. 2008 2024-11-21T09:57:46Z 2024-11-21T09:57:46Z Working Paper https://hdl.handle.net/10568/161736 en https://doi.org/10.1126/science.1150255 Open Access application/pdf International Food Policy Research Institute Harjes, Carlos E.; Rocheford, Torbert R.; Bai, Ling; Brutnell, Thomas R.; Kandianis, Catherine Bermudez; Sowinski, Stephen G.; Stapleton, Ann E.; Vallabhaneni, Ratnakar; Williams, Mark; Wurtzel, Eleanore T.; Yan, Jianbing and Buckler, Edward S. 2008. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. HarvestPlus Abstract 7. Washington, DC: International Food Policy Research Institute (IFPRI). https://hdl.handle.net/10568/161736
spellingShingle maize
plant breeding
nutrition
malnutrition
micronutrient deficiencies
trace elements
biofortification
Harjes, Carlos E.
Rocheford, Torbert R.
Bai, Ling
Brutnell, Thomas R.
Kandianis, Catherine Bermudez
Sowinski, Stephen G.
Stapleton, Ann E.
Vallabhaneni, Ratnakar
Williams, Mark
Wurtzel, Eleanore T.
Yan, Jianbing
Buckler, Edward S.
Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification
title Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification
title_full Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification
title_fullStr Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification
title_full_unstemmed Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification
title_short Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification
title_sort natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification
topic maize
plant breeding
nutrition
malnutrition
micronutrient deficiencies
trace elements
biofortification
url https://hdl.handle.net/10568/161736
work_keys_str_mv AT harjescarlose naturalgeneticvariationinlycopeneepsiloncyclasetappedformaizebiofortification
AT rochefordtorbertr naturalgeneticvariationinlycopeneepsiloncyclasetappedformaizebiofortification
AT bailing naturalgeneticvariationinlycopeneepsiloncyclasetappedformaizebiofortification
AT brutnellthomasr naturalgeneticvariationinlycopeneepsiloncyclasetappedformaizebiofortification
AT kandianiscatherinebermudez naturalgeneticvariationinlycopeneepsiloncyclasetappedformaizebiofortification
AT sowinskistepheng naturalgeneticvariationinlycopeneepsiloncyclasetappedformaizebiofortification
AT stapletonanne naturalgeneticvariationinlycopeneepsiloncyclasetappedformaizebiofortification
AT vallabhaneniratnakar naturalgeneticvariationinlycopeneepsiloncyclasetappedformaizebiofortification
AT williamsmark naturalgeneticvariationinlycopeneepsiloncyclasetappedformaizebiofortification
AT wurtzeleleanoret naturalgeneticvariationinlycopeneepsiloncyclasetappedformaizebiofortification
AT yanjianbing naturalgeneticvariationinlycopeneepsiloncyclasetappedformaizebiofortification
AT buckleredwards naturalgeneticvariationinlycopeneepsiloncyclasetappedformaizebiofortification