Insect damage assessment of tropical grasses under field conditions using a modular pipeline with image processing and deep learning techniques
| Autores principales: | , , , , , |
|---|---|
| Formato: | Póster |
| Lenguaje: | Inglés |
| Publicado: |
2024
|
| Materias: | |
| Acceso en línea: | https://hdl.handle.net/10568/159652 |
Ejemplares similares: Insect damage assessment of tropical grasses under field conditions using a modular pipeline with image processing and deep learning techniques
- AI-powered tool for spidermite damage assessment in tropical grasses
- A simple algorithm outperforms a machine learning approach for quantifying spittlebug damage in tropical grasses
- Técnicas de imágenes en fitopatología
- NYMPHSTAR: an accurate high-throughput quantitative method for whitefly (Aleurotrachelus socialis Bondar) resistance phenotyping in cassava
- Enhancing phenotyping accuracy for selection of Urochloa tolerant genotypes to red spider mite (Oligonychus trichardti)
- Adquisición de datos para modelación con inteligencia artificial aplicada a la agricultura: Mejoramiento genético de forrajes