Hybrid-AI and Model Ensembling to Exploit UAV-Based RGB Imagery: An Evaluation of Sorghum Crop’s Nitrogen Content
Non-invasive crop analysis through image-based methods holds great promise for applications in plant research, yet accurate and robust trait inference from images remains a critical challenge. Our study investigates the potential of AI model ensembling and hybridization approaches to infer sorghum c...
| Autores principales: | , , , , , , , , , , , , , , , |
|---|---|
| Formato: | Journal Article |
| Lenguaje: | Inglés |
| Publicado: |
MDPI
2024
|
| Materias: | |
| Acceso en línea: | https://hdl.handle.net/10568/158402 |
Ejemplares similares: Hybrid-AI and Model Ensembling to Exploit UAV-Based RGB Imagery: An Evaluation of Sorghum Crop’s Nitrogen Content
- Deep learning-based estimation of rice yield using RGB image
- Top view RGB image dataset of Urochloa hybrids for HTP and AI applications
- Phenotyping Fusarium head blight through seed morphology characteristics using RGB imaging
- RGB Image Dataset of Urochloa Hybrids for High-Throughput Phenotyping and Artificial Intelligence Applications
- RGB imaging and computer vision-based approaches for identifying spike number loci for wheat
- Development of AI methods for seed yield prediction using RGB images: Progress Report