NIRS-based prediction modeling for nutritional traits in Perilla germplasm from NEH Region of India: Comparative chemometric analysis using mPLS and deep learning
| Autores principales: | , , , , , , , , , |
|---|---|
| Formato: | Journal Article |
| Lenguaje: | Inglés |
| Publicado: |
Springer
2024
|
| Materias: | |
| Acceso en línea: | https://hdl.handle.net/10568/155137 |
Ejemplares similares: NIRS-based prediction modeling for nutritional traits in Perilla germplasm from NEH Region of India: Comparative chemometric analysis using mPLS and deep learning
- Multivariate data analysis assisted mining of nutri-rich genotypes from North Eastern Himalayan germplasm collection of Perilla (Perilla frutescens L.)
- Multivariate data analysis assisted mining of nutri-rich genotypes from North Eastern Himalayan germplasm collection of Perilla (Perilla frutescens L.)
- Comparative analysis of modified partial least squares regression and hybrid deep learning models for predicting protein content in Perilla (Perilla frutescens L.) seed meal using NIR spectroscopy
- Milfruto - Nueva variedad de Chile Dulce
- NIRCoreVision: A novel deep learning-based framework with GUI integration for core set selection from NIRS data using 1D CNN and k-means clustering
- Near infrared reflectance spectroscopy-driven chemometric modeling for predicting key quality traits in Lablab Bean (Lablab purpureus L.) Germplasm