Modeling integrated soil fertility management for maize production in Kenya using a Bayesian calibration of the DayCent model

Sustainable intensification schemes such as integrated soil fertility management (ISFM) are a proposed strategy to close yield gaps, increase soil fertility, and achieve food security in sub-Saharan Africa. Biogeochemical models such as DayCent can assess their potential at larger scales, but these...

Descripción completa

Detalles Bibliográficos
Autores principales: Laub, M., Necpalova, M., Van de Broek, M., Corbeels, M., Ndungu, S.M., Mucheru-Muna, M.W., Mugendi, D., Yegon, R., Waswa, W., Vanlauwe, B., Six, J.
Formato: Journal Article
Lenguaje:Inglés
Publicado: Copernicus GmbH 2024
Materias:
Acceso en línea:https://hdl.handle.net/10568/152482
_version_ 1855531842891939840
author Laub, M.
Necpalova, M.
Van de Broek, M.
Corbeels, M.
Ndungu, S.M.
Mucheru-Muna, M.W.
Mugendi, D.
Yegon, R.
Waswa, W.
Vanlauwe, B.
Six, J.
author_browse Corbeels, M.
Laub, M.
Mucheru-Muna, M.W.
Mugendi, D.
Ndungu, S.M.
Necpalova, M.
Six, J.
Van de Broek, M.
Vanlauwe, B.
Waswa, W.
Yegon, R.
author_facet Laub, M.
Necpalova, M.
Van de Broek, M.
Corbeels, M.
Ndungu, S.M.
Mucheru-Muna, M.W.
Mugendi, D.
Yegon, R.
Waswa, W.
Vanlauwe, B.
Six, J.
author_sort Laub, M.
collection Repository of Agricultural Research Outputs (CGSpace)
description Sustainable intensification schemes such as integrated soil fertility management (ISFM) are a proposed strategy to close yield gaps, increase soil fertility, and achieve food security in sub-Saharan Africa. Biogeochemical models such as DayCent can assess their potential at larger scales, but these models need to be calibrated to new environments and rigorously tested for accuracy. Here, we present a Bayesian calibration of DayCent, using data from four long-term field experiments in Kenya in a leave-one-site-out cross-validation approach. The experimental treatments consisted of the addition of low- to high-quality organic resources, with and without mineral nitrogen fertilizer. We assessed the potential of DayCent to accurately simulate the key elements of sustainable intensification, including (1) yield, (2) the changes in soil organic carbon (SOC), and (3) the greenhouse gas (GHG) balance of CO2 and N2O combined. Compared to the initial parameters, the cross-validation showed improved DayCent simulations of maize grain yield (with the Nash–Sutcliffe model efficiency (EF) increasing from 0.36 to 0.50) and of SOC stock changes (with EF increasing from 0.36 to 0.55). The simulations of maize yield and those of SOC stock changes also improved by site (with site-specific EF ranging between 0.15 and 0.38 for maize yield and between −0.9 and 0.58 for SOC stock changes). The four cross-validation-derived posterior parameter distributions (leaving out one site each) were similar in all but one parameter. Together with the model performance for the different sites in cross-validation, this indicated the robustness of the DayCent model parameterization and its reliability for the conditions in Kenya. While DayCent poorly reproduced daily N2O emissions (with EF ranging between −0.44 and −0.03 by site), cumulative seasonal N2O emissions were simulated more accurately (EF ranging between 0.06 and 0.69 by site). The simulated yield-scaled GHG balance was highest in control treatments without N addition (between 0.8 and 1.8 kg CO2 equivalent per kg grain yield across sites) and was about 30 % to 40 % lower in the treatment that combined the application of mineral N and of manure at a rate of 1.2 t C ha−1 yr−1. In conclusion, our results indicate that DayCent is well suited for estimating the impact of ISFM on maize yield and SOC changes. They also indicate that the trade-off between maize yield and GHG balance is stronger in low-fertility sites and that preventing SOC losses, while difficult to achieve through the addition of external organic resources, is a priority for the sustainable intensification of maize production in Kenya.
format Journal Article
id CGSpace152482
institution CGIAR Consortium
language Inglés
publishDate 2024
publishDateRange 2024
publishDateSort 2024
publisher Copernicus GmbH
publisherStr Copernicus GmbH
record_format dspace
spelling CGSpace1524822025-12-08T10:11:39Z Modeling integrated soil fertility management for maize production in Kenya using a Bayesian calibration of the DayCent model Laub, M. Necpalova, M. Van de Broek, M. Corbeels, M. Ndungu, S.M. Mucheru-Muna, M.W. Mugendi, D. Yegon, R. Waswa, W. Vanlauwe, B. Six, J. soil fertility maize crop production food security east africa Sustainable intensification schemes such as integrated soil fertility management (ISFM) are a proposed strategy to close yield gaps, increase soil fertility, and achieve food security in sub-Saharan Africa. Biogeochemical models such as DayCent can assess their potential at larger scales, but these models need to be calibrated to new environments and rigorously tested for accuracy. Here, we present a Bayesian calibration of DayCent, using data from four long-term field experiments in Kenya in a leave-one-site-out cross-validation approach. The experimental treatments consisted of the addition of low- to high-quality organic resources, with and without mineral nitrogen fertilizer. We assessed the potential of DayCent to accurately simulate the key elements of sustainable intensification, including (1) yield, (2) the changes in soil organic carbon (SOC), and (3) the greenhouse gas (GHG) balance of CO2 and N2O combined. Compared to the initial parameters, the cross-validation showed improved DayCent simulations of maize grain yield (with the Nash–Sutcliffe model efficiency (EF) increasing from 0.36 to 0.50) and of SOC stock changes (with EF increasing from 0.36 to 0.55). The simulations of maize yield and those of SOC stock changes also improved by site (with site-specific EF ranging between 0.15 and 0.38 for maize yield and between −0.9 and 0.58 for SOC stock changes). The four cross-validation-derived posterior parameter distributions (leaving out one site each) were similar in all but one parameter. Together with the model performance for the different sites in cross-validation, this indicated the robustness of the DayCent model parameterization and its reliability for the conditions in Kenya. While DayCent poorly reproduced daily N2O emissions (with EF ranging between −0.44 and −0.03 by site), cumulative seasonal N2O emissions were simulated more accurately (EF ranging between 0.06 and 0.69 by site). The simulated yield-scaled GHG balance was highest in control treatments without N addition (between 0.8 and 1.8 kg CO2 equivalent per kg grain yield across sites) and was about 30 % to 40 % lower in the treatment that combined the application of mineral N and of manure at a rate of 1.2 t C ha−1 yr−1. In conclusion, our results indicate that DayCent is well suited for estimating the impact of ISFM on maize yield and SOC changes. They also indicate that the trade-off between maize yield and GHG balance is stronger in low-fertility sites and that preventing SOC losses, while difficult to achieve through the addition of external organic resources, is a priority for the sustainable intensification of maize production in Kenya. 2024 2024-09-30T08:44:07Z 2024-09-30T08:44:07Z Journal Article https://hdl.handle.net/10568/152482 en Open Access application/pdf Copernicus GmbH Laub, M., Necpalova, M., Van de Broek, M., Corbeels, M., Ndungu, S.M., Mucheru-Muna, M.W., ... & Six, J. (2024). Modeling integrated soil fertility management for maize production in Kenya using a Bayesian calibration of the DayCent model. Biogeosciences, 21(16), 3691-3716.
spellingShingle soil fertility
maize
crop production
food security
east africa
Laub, M.
Necpalova, M.
Van de Broek, M.
Corbeels, M.
Ndungu, S.M.
Mucheru-Muna, M.W.
Mugendi, D.
Yegon, R.
Waswa, W.
Vanlauwe, B.
Six, J.
Modeling integrated soil fertility management for maize production in Kenya using a Bayesian calibration of the DayCent model
title Modeling integrated soil fertility management for maize production in Kenya using a Bayesian calibration of the DayCent model
title_full Modeling integrated soil fertility management for maize production in Kenya using a Bayesian calibration of the DayCent model
title_fullStr Modeling integrated soil fertility management for maize production in Kenya using a Bayesian calibration of the DayCent model
title_full_unstemmed Modeling integrated soil fertility management for maize production in Kenya using a Bayesian calibration of the DayCent model
title_short Modeling integrated soil fertility management for maize production in Kenya using a Bayesian calibration of the DayCent model
title_sort modeling integrated soil fertility management for maize production in kenya using a bayesian calibration of the daycent model
topic soil fertility
maize
crop production
food security
east africa
url https://hdl.handle.net/10568/152482
work_keys_str_mv AT laubm modelingintegratedsoilfertilitymanagementformaizeproductioninkenyausingabayesiancalibrationofthedaycentmodel
AT necpalovam modelingintegratedsoilfertilitymanagementformaizeproductioninkenyausingabayesiancalibrationofthedaycentmodel
AT vandebroekm modelingintegratedsoilfertilitymanagementformaizeproductioninkenyausingabayesiancalibrationofthedaycentmodel
AT corbeelsm modelingintegratedsoilfertilitymanagementformaizeproductioninkenyausingabayesiancalibrationofthedaycentmodel
AT ndungusm modelingintegratedsoilfertilitymanagementformaizeproductioninkenyausingabayesiancalibrationofthedaycentmodel
AT mucherumunamw modelingintegratedsoilfertilitymanagementformaizeproductioninkenyausingabayesiancalibrationofthedaycentmodel
AT mugendid modelingintegratedsoilfertilitymanagementformaizeproductioninkenyausingabayesiancalibrationofthedaycentmodel
AT yegonr modelingintegratedsoilfertilitymanagementformaizeproductioninkenyausingabayesiancalibrationofthedaycentmodel
AT waswaw modelingintegratedsoilfertilitymanagementformaizeproductioninkenyausingabayesiancalibrationofthedaycentmodel
AT vanlauweb modelingintegratedsoilfertilitymanagementformaizeproductioninkenyausingabayesiancalibrationofthedaycentmodel
AT sixj modelingintegratedsoilfertilitymanagementformaizeproductioninkenyausingabayesiancalibrationofthedaycentmodel