Use of time series normalized difference vegetation index (NDVI) to monitor fall armyworm (Spodoptera frugiperda) damage on maize production systems in Africa

Fall armyworm (FAW) Spodoptera frugiperda (J.E. Smith), damage was monitored at a regional scale using time series data in Western and Southern African countries. The study employed the normalized difference vegetation index (NDVI) computed from Landsat 8 imagery using the Google Earth Engine (GEE)...

Full description

Bibliographic Details
Main Authors: Adan, M., Tonnang, H.E.Z., Greve, K., Borgemeister, C., Goergen, G.
Format: Journal Article
Language:Inglés
Published: Informa UK Limited 2023
Subjects:
Online Access:https://hdl.handle.net/10568/151988
_version_ 1855514759244283904
author Adan, M.
Tonnang, H.E.Z.
Greve, K.
Borgemeister, C.
Goergen, G.
author_browse Adan, M.
Borgemeister, C.
Goergen, G.
Greve, K.
Tonnang, H.E.Z.
author_facet Adan, M.
Tonnang, H.E.Z.
Greve, K.
Borgemeister, C.
Goergen, G.
author_sort Adan, M.
collection Repository of Agricultural Research Outputs (CGSpace)
description Fall armyworm (FAW) Spodoptera frugiperda (J.E. Smith), damage was monitored at a regional scale using time series data in Western and Southern African countries. The study employed the normalized difference vegetation index (NDVI) computed from Landsat 8 imagery using the Google Earth Engine (GEE) using image composites for the years 2013 to 2020 for the study areas. The index was then reclassified based on the NDVI threshold values into low, sparse, moderate, and dense classes. FAW prevalence data were then utilized to validate the correlation between the FAW infestation and NDVI values. FAW was associated with a decrease in vegetation productivity between the years 2016, 2017, and 2018 when the pest infestation was reported in the study areas. The validation results showed that there is a correlation between FAW infestation and NDVI (R20.83). Our study highlighted that NDVI can be used as a proxy to quantify pest damage to vegetation productivity.
format Journal Article
id CGSpace151988
institution CGIAR Consortium
language Inglés
publishDate 2023
publishDateRange 2023
publishDateSort 2023
publisher Informa UK Limited
publisherStr Informa UK Limited
record_format dspace
spelling CGSpace1519882025-12-08T09:54:28Z Use of time series normalized difference vegetation index (NDVI) to monitor fall armyworm (Spodoptera frugiperda) damage on maize production systems in Africa Adan, M. Tonnang, H.E.Z. Greve, K. Borgemeister, C. Goergen, G. imagery vegetation productivity fall armyworm maize Fall armyworm (FAW) Spodoptera frugiperda (J.E. Smith), damage was monitored at a regional scale using time series data in Western and Southern African countries. The study employed the normalized difference vegetation index (NDVI) computed from Landsat 8 imagery using the Google Earth Engine (GEE) using image composites for the years 2013 to 2020 for the study areas. The index was then reclassified based on the NDVI threshold values into low, sparse, moderate, and dense classes. FAW prevalence data were then utilized to validate the correlation between the FAW infestation and NDVI values. FAW was associated with a decrease in vegetation productivity between the years 2016, 2017, and 2018 when the pest infestation was reported in the study areas. The validation results showed that there is a correlation between FAW infestation and NDVI (R20.83). Our study highlighted that NDVI can be used as a proxy to quantify pest damage to vegetation productivity. 2023-12-31 2024-09-05T09:55:40Z 2024-09-05T09:55:40Z Journal Article https://hdl.handle.net/10568/151988 en Open Access application/pdf Informa UK Limited Adan, M., Tonnang, H.E., Greve, K., Borgemeister, C. & Goergen, G. (2023). Use of time series normalized difference vegetation index (NDVI) to monitor fall armyworm (Spodoptera frugiperda) damage on maize production systems in Africa. Geocarto International, 38(1): 2186492, 1-15.
spellingShingle imagery
vegetation
productivity
fall armyworm
maize
Adan, M.
Tonnang, H.E.Z.
Greve, K.
Borgemeister, C.
Goergen, G.
Use of time series normalized difference vegetation index (NDVI) to monitor fall armyworm (Spodoptera frugiperda) damage on maize production systems in Africa
title Use of time series normalized difference vegetation index (NDVI) to monitor fall armyworm (Spodoptera frugiperda) damage on maize production systems in Africa
title_full Use of time series normalized difference vegetation index (NDVI) to monitor fall armyworm (Spodoptera frugiperda) damage on maize production systems in Africa
title_fullStr Use of time series normalized difference vegetation index (NDVI) to monitor fall armyworm (Spodoptera frugiperda) damage on maize production systems in Africa
title_full_unstemmed Use of time series normalized difference vegetation index (NDVI) to monitor fall armyworm (Spodoptera frugiperda) damage on maize production systems in Africa
title_short Use of time series normalized difference vegetation index (NDVI) to monitor fall armyworm (Spodoptera frugiperda) damage on maize production systems in Africa
title_sort use of time series normalized difference vegetation index ndvi to monitor fall armyworm spodoptera frugiperda damage on maize production systems in africa
topic imagery
vegetation
productivity
fall armyworm
maize
url https://hdl.handle.net/10568/151988
work_keys_str_mv AT adanm useoftimeseriesnormalizeddifferencevegetationindexndvitomonitorfallarmywormspodopterafrugiperdadamageonmaizeproductionsystemsinafrica
AT tonnanghez useoftimeseriesnormalizeddifferencevegetationindexndvitomonitorfallarmywormspodopterafrugiperdadamageonmaizeproductionsystemsinafrica
AT grevek useoftimeseriesnormalizeddifferencevegetationindexndvitomonitorfallarmywormspodopterafrugiperdadamageonmaizeproductionsystemsinafrica
AT borgemeisterc useoftimeseriesnormalizeddifferencevegetationindexndvitomonitorfallarmywormspodopterafrugiperdadamageonmaizeproductionsystemsinafrica
AT goergeng useoftimeseriesnormalizeddifferencevegetationindexndvitomonitorfallarmywormspodopterafrugiperdadamageonmaizeproductionsystemsinafrica