Physics-informed machine learning algorithms for forecasting sediment yield: an analysis of physical consistency, sensitivity, and interpretability

The sediment transport, involving the movement of the bedload and suspended sediment in the basins, is a critical environmental concern that worsens water scarcity and leads to degradation of land and its ecosystems. Machine learning (ML) algorithms have emerged as powerful tools for predicting sedi...

Descripción completa

Detalles Bibliográficos
Autores principales: El Bilali, A., Brouziyne, Youssef, Attar, O., Lamane, H., Hadri, A., Taleb, A.
Formato: Journal Article
Lenguaje:Inglés
Publicado: Springer 2024
Materias:
Acceso en línea:https://hdl.handle.net/10568/149323

Ejemplares similares: Physics-informed machine learning algorithms for forecasting sediment yield: an analysis of physical consistency, sensitivity, and interpretability