A comparison of nonparametric efficiency estimators: DEA, FDH, DEAC, FDHC, order-m and quantile
| Autores principales: | , , |
|---|---|
| Formato: | Journal Article |
| Lenguaje: | Inglés |
| Publicado: |
2016
|
| Materias: | |
| Acceso en línea: | https://hdl.handle.net/10568/146173 |
Ejemplares similares: A comparison of nonparametric efficiency estimators: DEA, FDH, DEAC, FDHC, order-m and quantile
- High-order conditional quantile estimation based on nonparametric models of regression
- A smooth nonparametric conditional quantile frontier estimator
- On nonparametric estimation: With a focus on agriculture
- Nonparametric regression estimation with general parametric error covariance
- A class of improved parametrically guided nonparametric regression estimators
- A class of nonparametric density derivative estimators based on global Lipschitz conditions