Assessing recall bias and measurement error in high-frequency social data collection for human-environment research
A major impediment to understanding human-environment interactions is that data on social systems are not collected in a way that is easily comparable to natural systems data. While many environmental variables are collected with high frequency, gridded in time and space, social data is typically co...
| Autores principales: | , , , |
|---|---|
| Formato: | Journal Article |
| Lenguaje: | Inglés |
| Publicado: |
Springer
2019
|
| Materias: | |
| Acceso en línea: | https://hdl.handle.net/10568/146110 |
| _version_ | 1855539794186076160 |
|---|---|
| author | Bell, Andrew R. Ward, Patrick S. Tamal, Md. Ehsanul Haque Killilea, Mary E. |
| author_browse | Bell, Andrew R. Killilea, Mary E. Tamal, Md. Ehsanul Haque Ward, Patrick S. |
| author_facet | Bell, Andrew R. Ward, Patrick S. Tamal, Md. Ehsanul Haque Killilea, Mary E. |
| author_sort | Bell, Andrew R. |
| collection | Repository of Agricultural Research Outputs (CGSpace) |
| description | A major impediment to understanding human-environment interactions is that data on social systems are not collected in a way that is easily comparable to natural systems data. While many environmental variables are collected with high frequency, gridded in time and space, social data is typically conducted irregularly, in waves that are far apart in time. These efforts typically engage respondents for hours at a time, and suffer from decay in participants’ ability to recall their experiences over long periods of time. Systematic use of mobile and smartphones has the potential to transcend these challenges, with a critical first step being an evaluation of where survey respondents experience the greatest recall decay. We present results from, to our knowledge, the first systematic evaluation of recall bias in components of a household survey, using the Open Data Kit (ODK) platform on Android smartphones. We tasked approximately 500 farmers in rural Bangladesh with responding regularly to components of a large household survey, randomizing the frequency of each task to be received weekly, monthly, or seasonally. We find respondents’ recall of consumption and experience (such as sick days) to suffer much more greatly than their recall of the use of their households’ time for labor and farm activities. Further, we demonstrate a feasible and cost-effective means of engaging respondents in rural areas to create and maintain a true socio-economic “baseline” to mirror similar efforts in the natural sciences. |
| format | Journal Article |
| id | CGSpace146110 |
| institution | CGIAR Consortium |
| language | Inglés |
| publishDate | 2019 |
| publishDateRange | 2019 |
| publishDateSort | 2019 |
| publisher | Springer |
| publisherStr | Springer |
| record_format | dspace |
| spelling | CGSpace1461102025-12-08T10:29:22Z Assessing recall bias and measurement error in high-frequency social data collection for human-environment research Bell, Andrew R. Ward, Patrick S. Tamal, Md. Ehsanul Haque Killilea, Mary E. household surveys data collection mobile equipment information and communication technologies mobile units A major impediment to understanding human-environment interactions is that data on social systems are not collected in a way that is easily comparable to natural systems data. While many environmental variables are collected with high frequency, gridded in time and space, social data is typically conducted irregularly, in waves that are far apart in time. These efforts typically engage respondents for hours at a time, and suffer from decay in participants’ ability to recall their experiences over long periods of time. Systematic use of mobile and smartphones has the potential to transcend these challenges, with a critical first step being an evaluation of where survey respondents experience the greatest recall decay. We present results from, to our knowledge, the first systematic evaluation of recall bias in components of a household survey, using the Open Data Kit (ODK) platform on Android smartphones. We tasked approximately 500 farmers in rural Bangladesh with responding regularly to components of a large household survey, randomizing the frequency of each task to be received weekly, monthly, or seasonally. We find respondents’ recall of consumption and experience (such as sick days) to suffer much more greatly than their recall of the use of their households’ time for labor and farm activities. Further, we demonstrate a feasible and cost-effective means of engaging respondents in rural areas to create and maintain a true socio-economic “baseline” to mirror similar efforts in the natural sciences. 2019-04-10 2024-06-21T09:05:51Z 2024-06-21T09:05:51Z Journal Article https://hdl.handle.net/10568/146110 en Open Access Springer Bell, Andrew; Ward, Patrick S.; Tamal, Md. Ehsanul Haque; and Killilea, Mary E. 2019. Assessing recall bias and measurement error in high-frequency social data collection for human-environment research. Population and Environment 40(3): 325-345. https://doi.org/10.1007/s11111-019-0314-1 |
| spellingShingle | household surveys data collection mobile equipment information and communication technologies mobile units Bell, Andrew R. Ward, Patrick S. Tamal, Md. Ehsanul Haque Killilea, Mary E. Assessing recall bias and measurement error in high-frequency social data collection for human-environment research |
| title | Assessing recall bias and measurement error in high-frequency social data collection for human-environment research |
| title_full | Assessing recall bias and measurement error in high-frequency social data collection for human-environment research |
| title_fullStr | Assessing recall bias and measurement error in high-frequency social data collection for human-environment research |
| title_full_unstemmed | Assessing recall bias and measurement error in high-frequency social data collection for human-environment research |
| title_short | Assessing recall bias and measurement error in high-frequency social data collection for human-environment research |
| title_sort | assessing recall bias and measurement error in high frequency social data collection for human environment research |
| topic | household surveys data collection mobile equipment information and communication technologies mobile units |
| url | https://hdl.handle.net/10568/146110 |
| work_keys_str_mv | AT bellandrewr assessingrecallbiasandmeasurementerrorinhighfrequencysocialdatacollectionforhumanenvironmentresearch AT wardpatricks assessingrecallbiasandmeasurementerrorinhighfrequencysocialdatacollectionforhumanenvironmentresearch AT tamalmdehsanulhaque assessingrecallbiasandmeasurementerrorinhighfrequencysocialdatacollectionforhumanenvironmentresearch AT killileamarye assessingrecallbiasandmeasurementerrorinhighfrequencysocialdatacollectionforhumanenvironmentresearch |