Leveraging unsupervised machine learning to examine women's vulnerability to climate change

We provide an application of machine learning to identify the distributional consequences of climate change in Malawi. We compare climate impact estimates based on drought indicators established objectively from the k-means algorithm to more traditional measures. Young women affected by drought were...

Descripción completa

Detalles Bibliográficos
Autores principales: Caruso, German, Mueller, Valerie, Villacis, Alexis
Formato: Journal Article
Lenguaje:Inglés
Publicado: Wiley 2024
Materias:
Acceso en línea:https://hdl.handle.net/10568/145032

Ejemplares similares: Leveraging unsupervised machine learning to examine women's vulnerability to climate change