Gene expression profiling in a mouse model for African trypanosomiasis
This study aimed to provide the foundation for an integrative approach to the identification of the mechanisms underlying the response to infection with Trypanosoma congolense, and to identify pathways that have previously been overlooked. We undertook a large-scale gene expression analysis study co...
| Autores principales: | , , , , , , , |
|---|---|
| Formato: | Journal Article |
| Lenguaje: | Inglés |
| Publicado: |
Springer
2006
|
| Materias: | |
| Acceso en línea: | https://hdl.handle.net/10568/1410 |
| _version_ | 1855531089628495872 |
|---|---|
| author | Kierstein, S. Noyes, H. Naessens, Jan Nakamura, Y. Pritchard, J. Gibson, John P. Kemp, Stephen J. Brass, A. |
| author_browse | Brass, A. Gibson, John P. Kemp, Stephen J. Kierstein, S. Naessens, Jan Nakamura, Y. Noyes, H. Pritchard, J. |
| author_facet | Kierstein, S. Noyes, H. Naessens, Jan Nakamura, Y. Pritchard, J. Gibson, John P. Kemp, Stephen J. Brass, A. |
| author_sort | Kierstein, S. |
| collection | Repository of Agricultural Research Outputs (CGSpace) |
| description | This study aimed to provide the foundation for an integrative approach to the identification of the mechanisms underlying the response to infection with Trypanosoma congolense, and to identify pathways that have previously been overlooked. We undertook a large-scale gene expression analysis study comparing susceptible A/J and more tolerant C57BL/6 mice. In an initial time course experiment, we monitored the development of parasitaemia and anaemia in every individual. Based on the kinetics of disease progression, we extracted total RNA from liver at days 0, 4, 7, 10 and 17 post infection and performed a microarray analysis. We identified 64 genes that were differentially expressed in the two strains in non-infected animals, of which nine genes remained largely unaffected by the disease. Gene expression profiling at stages of low, peak, clearance and recurrence of parasitaemia suggest that susceptibility is associated with high expression of genes coding for chemokines (e.g. Ccl24, Ccl27 and Cxcl13), complement components (C1q and C3) and interferon receptor alpha (Ifnar1). Additionally, susceptible A/J mice expressed higher levels of some potassium channel genes. In contrast, messenger RNA levels of a few immune response, metabolism and protease genes (e.g. Prss7 and Mmp13) were higher in the tolerant C57BL/6 strain as compared to A/J. |
| format | Journal Article |
| id | CGSpace1410 |
| institution | CGIAR Consortium |
| language | Inglés |
| publishDate | 2006 |
| publishDateRange | 2006 |
| publishDateSort | 2006 |
| publisher | Springer |
| publisherStr | Springer |
| record_format | dspace |
| spelling | CGSpace14102023-12-08T19:36:04Z Gene expression profiling in a mouse model for African trypanosomiasis Kierstein, S. Noyes, H. Naessens, Jan Nakamura, Y. Pritchard, J. Gibson, John P. Kemp, Stephen J. Brass, A. trypanosomiasis gene expression This study aimed to provide the foundation for an integrative approach to the identification of the mechanisms underlying the response to infection with Trypanosoma congolense, and to identify pathways that have previously been overlooked. We undertook a large-scale gene expression analysis study comparing susceptible A/J and more tolerant C57BL/6 mice. In an initial time course experiment, we monitored the development of parasitaemia and anaemia in every individual. Based on the kinetics of disease progression, we extracted total RNA from liver at days 0, 4, 7, 10 and 17 post infection and performed a microarray analysis. We identified 64 genes that were differentially expressed in the two strains in non-infected animals, of which nine genes remained largely unaffected by the disease. Gene expression profiling at stages of low, peak, clearance and recurrence of parasitaemia suggest that susceptibility is associated with high expression of genes coding for chemokines (e.g. Ccl24, Ccl27 and Cxcl13), complement components (C1q and C3) and interferon receptor alpha (Ifnar1). Additionally, susceptible A/J mice expressed higher levels of some potassium channel genes. In contrast, messenger RNA levels of a few immune response, metabolism and protease genes (e.g. Prss7 and Mmp13) were higher in the tolerant C57BL/6 strain as compared to A/J. 2006-12-01 2010-05-07T11:08:49Z 2010-05-07T11:08:49Z Journal Article https://hdl.handle.net/10568/1410 en Limited Access Springer Kierstein, S.; Noyes, H.A.; Naessens, J.; Nakamura, Y.; Pritchard, C.; Gibson, J.; Kemp, S.J.; Brass, A. 2006. Gene expression profiling in a mouse model for African trypanosomiasis. Genes and Immunity 7(8):667-679. |
| spellingShingle | trypanosomiasis gene expression Kierstein, S. Noyes, H. Naessens, Jan Nakamura, Y. Pritchard, J. Gibson, John P. Kemp, Stephen J. Brass, A. Gene expression profiling in a mouse model for African trypanosomiasis |
| title | Gene expression profiling in a mouse model for African trypanosomiasis |
| title_full | Gene expression profiling in a mouse model for African trypanosomiasis |
| title_fullStr | Gene expression profiling in a mouse model for African trypanosomiasis |
| title_full_unstemmed | Gene expression profiling in a mouse model for African trypanosomiasis |
| title_short | Gene expression profiling in a mouse model for African trypanosomiasis |
| title_sort | gene expression profiling in a mouse model for african trypanosomiasis |
| topic | trypanosomiasis gene expression |
| url | https://hdl.handle.net/10568/1410 |
| work_keys_str_mv | AT kiersteins geneexpressionprofilinginamousemodelforafricantrypanosomiasis AT noyesh geneexpressionprofilinginamousemodelforafricantrypanosomiasis AT naessensjan geneexpressionprofilinginamousemodelforafricantrypanosomiasis AT nakamuray geneexpressionprofilinginamousemodelforafricantrypanosomiasis AT pritchardj geneexpressionprofilinginamousemodelforafricantrypanosomiasis AT gibsonjohnp geneexpressionprofilinginamousemodelforafricantrypanosomiasis AT kempstephenj geneexpressionprofilinginamousemodelforafricantrypanosomiasis AT brassa geneexpressionprofilinginamousemodelforafricantrypanosomiasis |