Long-term soil organic carbon and crop yield feedbacks differ between 16 soil-crop models in sub-Saharan Africa
Food insecurity in sub-Saharan Africa is partly due to low staple crop yields, resulting from poor soil fertility and low nutrient inputs. Integrated soil fertility management (ISFM), which includes the combined use of mineral and organic fertilizers, can contribute to increasing yields and sustaini...
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Journal Article |
| Language: | Inglés |
| Published: |
Elsevier
2024
|
| Subjects: | |
| Online Access: | https://hdl.handle.net/10568/139578 |
| _version_ | 1855518962719129600 |
|---|---|
| author | Couedel, A. Falconnier, G.N. Adam, M. Cardinael, R. Boote, K. Justes, E. Smith, W.N. Whitbread, Anthony M. Affholder, F. Balkovic, J. Basso, B. Bhatia, A. Chakrabarti, B. Chikowo, R. Christina, M. Faye, B. Ferchaud, F. Folberth, C. Akinseye, F.M. Gaiser, T. Galdos, M.V. Gayler, S. Gorooei, A. Grant, B. Guibert, H. Hoogenboom, G. Kamali, B. Laub, M. Maureira, F. Mequanint, F. Nendel, C. Forter, C.H. Ripoche, D. Ruane, A.C. Rusinamhodzi, Leonard Sharma, S. Singh, U. Six, J. Srivastava, A. Vanlauwe, Bernard Versini, A. Vianna, M. Webber, H. Weber, T.K.D. Zhang, C. Corbeels, Marc |
| author_browse | Adam, M. Affholder, F. Akinseye, F.M. Balkovic, J. Basso, B. Bhatia, A. Boote, K. Cardinael, R. Chakrabarti, B. Chikowo, R. Christina, M. Corbeels, Marc Couedel, A. Falconnier, G.N. Faye, B. Ferchaud, F. Folberth, C. Forter, C.H. Gaiser, T. Galdos, M.V. Gayler, S. Gorooei, A. Grant, B. Guibert, H. Hoogenboom, G. Justes, E. Kamali, B. Laub, M. Maureira, F. Mequanint, F. Nendel, C. Ripoche, D. Ruane, A.C. Rusinamhodzi, Leonard Sharma, S. Singh, U. Six, J. Smith, W.N. Srivastava, A. Vanlauwe, Bernard Versini, A. Vianna, M. Webber, H. Weber, T.K.D. Whitbread, Anthony M. Zhang, C. |
| author_facet | Couedel, A. Falconnier, G.N. Adam, M. Cardinael, R. Boote, K. Justes, E. Smith, W.N. Whitbread, Anthony M. Affholder, F. Balkovic, J. Basso, B. Bhatia, A. Chakrabarti, B. Chikowo, R. Christina, M. Faye, B. Ferchaud, F. Folberth, C. Akinseye, F.M. Gaiser, T. Galdos, M.V. Gayler, S. Gorooei, A. Grant, B. Guibert, H. Hoogenboom, G. Kamali, B. Laub, M. Maureira, F. Mequanint, F. Nendel, C. Forter, C.H. Ripoche, D. Ruane, A.C. Rusinamhodzi, Leonard Sharma, S. Singh, U. Six, J. Srivastava, A. Vanlauwe, Bernard Versini, A. Vianna, M. Webber, H. Weber, T.K.D. Zhang, C. Corbeels, Marc |
| author_sort | Couedel, A. |
| collection | Repository of Agricultural Research Outputs (CGSpace) |
| description | Food insecurity in sub-Saharan Africa is partly due to low staple crop yields, resulting from poor soil fertility and low nutrient inputs. Integrated soil fertility management (ISFM), which includes the combined use of mineral and organic fertilizers, can contribute to increasing yields and sustaining soil organic carbon (SOC) in the long term. Soil-crop simulation models can help assess the performance and trade-offs of a range of crop management practices including ISFM, under current and future climate. Yet, uncertainty in model simulations can be high, resulting from poor model calibration and/or inadequate model structure. Multi-model simulations have been shown to be more robust than those with single models and help understand and reduce modelling uncertainty. In this study, we aim to perform the first multi-model comparison for long-term simulations of crop yield and SOC and their feedbacks in SSA. We evaluated the performance of 16 soil-crop models using data from four long-term maize experiments at sites in SSA with contrasting climates and soils. Each experiment had four treatments: i) no exogenous inputs, ii) addition of mineral nitrogen (N) fertilizer, iii) use of organic amendments, and iv) combined use of mineral and organic inputs. We assessed model performance in two steps: through blind calibration involving a minimum level of experimental data provided to the modeling teams, and subsequently through full calibration, which included a more extensive set of observational data. Model ensemble accuracy was greater with full calibration than blind calibration. Improvement in model accuracy was larger for maize yields (nRMSE 48 vs 18%) than for topsoil SOC (nRMSE 22 vs 14%). Model ensemble uncertainty (defined as the coefficient of variation across the 16 models) increased over the duration of the long-term experiments. Uncertainty of SOC simulations increased when organic amendments were used, whilst uncertainty of yield predictions was largest when no inputs were applied. Our study revealed large discrepancies among the models in simulating i) crop-to-soil feedbacks due to uncertainties in simulated carbon coming from roots, and ii) soil-to-crop feedbacks due to large uncertainties in simulated crop N supply from soil organic matter decomposition. These discrepancies were largest when organic amendments were applied. The results highlight the need for long-term experiments in which root and soil N dynamics are monitored. This will provide the corresponding data to improve and calibrate soil-crop models, which will lead to more robust and reliable simulations of SOC and crop productivity, and their interactions. |
| format | Journal Article |
| id | CGSpace139578 |
| institution | CGIAR Consortium |
| language | Inglés |
| publishDate | 2024 |
| publishDateRange | 2024 |
| publishDateSort | 2024 |
| publisher | Elsevier |
| publisherStr | Elsevier |
| record_format | dspace |
| spelling | CGSpace1395782025-12-08T09:54:28Z Long-term soil organic carbon and crop yield feedbacks differ between 16 soil-crop models in sub-Saharan Africa Couedel, A. Falconnier, G.N. Adam, M. Cardinael, R. Boote, K. Justes, E. Smith, W.N. Whitbread, Anthony M. Affholder, F. Balkovic, J. Basso, B. Bhatia, A. Chakrabarti, B. Chikowo, R. Christina, M. Faye, B. Ferchaud, F. Folberth, C. Akinseye, F.M. Gaiser, T. Galdos, M.V. Gayler, S. Gorooei, A. Grant, B. Guibert, H. Hoogenboom, G. Kamali, B. Laub, M. Maureira, F. Mequanint, F. Nendel, C. Forter, C.H. Ripoche, D. Ruane, A.C. Rusinamhodzi, Leonard Sharma, S. Singh, U. Six, J. Srivastava, A. Vanlauwe, Bernard Versini, A. Vianna, M. Webber, H. Weber, T.K.D. Zhang, C. Corbeels, Marc soil crops simulation models soil organic matter modelling field experiments sub-saharan africa Food insecurity in sub-Saharan Africa is partly due to low staple crop yields, resulting from poor soil fertility and low nutrient inputs. Integrated soil fertility management (ISFM), which includes the combined use of mineral and organic fertilizers, can contribute to increasing yields and sustaining soil organic carbon (SOC) in the long term. Soil-crop simulation models can help assess the performance and trade-offs of a range of crop management practices including ISFM, under current and future climate. Yet, uncertainty in model simulations can be high, resulting from poor model calibration and/or inadequate model structure. Multi-model simulations have been shown to be more robust than those with single models and help understand and reduce modelling uncertainty. In this study, we aim to perform the first multi-model comparison for long-term simulations of crop yield and SOC and their feedbacks in SSA. We evaluated the performance of 16 soil-crop models using data from four long-term maize experiments at sites in SSA with contrasting climates and soils. Each experiment had four treatments: i) no exogenous inputs, ii) addition of mineral nitrogen (N) fertilizer, iii) use of organic amendments, and iv) combined use of mineral and organic inputs. We assessed model performance in two steps: through blind calibration involving a minimum level of experimental data provided to the modeling teams, and subsequently through full calibration, which included a more extensive set of observational data. Model ensemble accuracy was greater with full calibration than blind calibration. Improvement in model accuracy was larger for maize yields (nRMSE 48 vs 18%) than for topsoil SOC (nRMSE 22 vs 14%). Model ensemble uncertainty (defined as the coefficient of variation across the 16 models) increased over the duration of the long-term experiments. Uncertainty of SOC simulations increased when organic amendments were used, whilst uncertainty of yield predictions was largest when no inputs were applied. Our study revealed large discrepancies among the models in simulating i) crop-to-soil feedbacks due to uncertainties in simulated carbon coming from roots, and ii) soil-to-crop feedbacks due to large uncertainties in simulated crop N supply from soil organic matter decomposition. These discrepancies were largest when organic amendments were applied. The results highlight the need for long-term experiments in which root and soil N dynamics are monitored. This will provide the corresponding data to improve and calibrate soil-crop models, which will lead to more robust and reliable simulations of SOC and crop productivity, and their interactions. 2024-04 2024-02-22T11:21:13Z 2024-02-22T11:21:13Z Journal Article https://hdl.handle.net/10568/139578 en Limited Access Elsevier Couëdel, A., Falconnier, G.N., Adam, M., Cardinael, R., Boote, K., Justes, E., ... & Corbeels, M. (2024). Long-term soil organic carbon and crop yield feedbacks differ between 16 soil-crop models in sub-Saharan Africa. European Journal of Agronomy, 155: 127109, 1-16. |
| spellingShingle | soil crops simulation models soil organic matter modelling field experiments sub-saharan africa Couedel, A. Falconnier, G.N. Adam, M. Cardinael, R. Boote, K. Justes, E. Smith, W.N. Whitbread, Anthony M. Affholder, F. Balkovic, J. Basso, B. Bhatia, A. Chakrabarti, B. Chikowo, R. Christina, M. Faye, B. Ferchaud, F. Folberth, C. Akinseye, F.M. Gaiser, T. Galdos, M.V. Gayler, S. Gorooei, A. Grant, B. Guibert, H. Hoogenboom, G. Kamali, B. Laub, M. Maureira, F. Mequanint, F. Nendel, C. Forter, C.H. Ripoche, D. Ruane, A.C. Rusinamhodzi, Leonard Sharma, S. Singh, U. Six, J. Srivastava, A. Vanlauwe, Bernard Versini, A. Vianna, M. Webber, H. Weber, T.K.D. Zhang, C. Corbeels, Marc Long-term soil organic carbon and crop yield feedbacks differ between 16 soil-crop models in sub-Saharan Africa |
| title | Long-term soil organic carbon and crop yield feedbacks differ between 16 soil-crop models in sub-Saharan Africa |
| title_full | Long-term soil organic carbon and crop yield feedbacks differ between 16 soil-crop models in sub-Saharan Africa |
| title_fullStr | Long-term soil organic carbon and crop yield feedbacks differ between 16 soil-crop models in sub-Saharan Africa |
| title_full_unstemmed | Long-term soil organic carbon and crop yield feedbacks differ between 16 soil-crop models in sub-Saharan Africa |
| title_short | Long-term soil organic carbon and crop yield feedbacks differ between 16 soil-crop models in sub-Saharan Africa |
| title_sort | long term soil organic carbon and crop yield feedbacks differ between 16 soil crop models in sub saharan africa |
| topic | soil crops simulation models soil organic matter modelling field experiments sub-saharan africa |
| url | https://hdl.handle.net/10568/139578 |
| work_keys_str_mv | AT couedela longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT falconniergn longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT adamm longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT cardinaelr longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT bootek longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT justese longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT smithwn longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT whitbreadanthonym longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT affholderf longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT balkovicj longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT bassob longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT bhatiaa longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT chakrabartib longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT chikowor longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT christinam longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT fayeb longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT ferchaudf longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT folberthc longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT akinseyefm longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT gaisert longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT galdosmv longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT gaylers longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT gorooeia longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT grantb longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT guiberth longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT hoogenboomg longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT kamalib longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT laubm longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT maureiraf longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT mequanintf longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT nendelc longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT forterch longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT ripoched longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT ruaneac longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT rusinamhodzileonard longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT sharmas longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT singhu longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT sixj longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT srivastavaa longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT vanlauwebernard longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT versinia longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT viannam longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT webberh longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT webertkd longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT zhangc longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica AT corbeelsmarc longtermsoilorganiccarbonandcropyieldfeedbacksdifferbetween16soilcropmodelsinsubsaharanafrica |