Estimating gender inequalities in labor-market outcomes using mobile phone data

Mobile phone data holds promise for contributing to slow-filling gaps about women and men’s labor. We generated gender-specific predictions of three labor market indicators (employment, unemployment and underemployment) using machine learning models that analyzed digital trace data and geospatial da...

Descripción completa

Detalles Bibliográficos
Autores principales: Seymour, Greg, Follett, Lendie, Henderson, Heath
Formato: Blog Post
Lenguaje:Inglés
Publicado: CGIAR 2023
Materias:
Acceso en línea:https://hdl.handle.net/10568/137808
_version_ 1855540404297924608
author Seymour, Greg
Follett, Lendie
Henderson, Heath
author_browse Follett, Lendie
Henderson, Heath
Seymour, Greg
author_facet Seymour, Greg
Follett, Lendie
Henderson, Heath
author_sort Seymour, Greg
collection Repository of Agricultural Research Outputs (CGSpace)
description Mobile phone data holds promise for contributing to slow-filling gaps about women and men’s labor. We generated gender-specific predictions of three labor market indicators (employment, unemployment and underemployment) using machine learning models that analyzed digital trace data and geospatial data. While the models correctly predict mobile phone users’ gender in most cases, they predict users’ labor market status much less accurately. With further refinement, we believe the methodology still shows prospects for filling gender data gaps in individual-level labor market statistics.
format Blog Post
id CGSpace137808
institution CGIAR Consortium
language Inglés
publishDate 2023
publishDateRange 2023
publishDateSort 2023
publisher CGIAR
publisherStr CGIAR
record_format dspace
spelling CGSpace1378082025-06-30T08:32:20Z Estimating gender inequalities in labor-market outcomes using mobile phone data Seymour, Greg Follett, Lendie Henderson, Heath data surveys gender labour market machine learning spatial data Mobile phone data holds promise for contributing to slow-filling gaps about women and men’s labor. We generated gender-specific predictions of three labor market indicators (employment, unemployment and underemployment) using machine learning models that analyzed digital trace data and geospatial data. While the models correctly predict mobile phone users’ gender in most cases, they predict users’ labor market status much less accurately. With further refinement, we believe the methodology still shows prospects for filling gender data gaps in individual-level labor market statistics. 2023-11-29 2024-01-16T18:42:24Z 2024-01-16T18:42:24Z Blog Post https://hdl.handle.net/10568/137808 en Open Access CGIAR Seymour, Greg; Follett, Lendie; and Henderson, Heath. 2023. Estimating gender inequalities in labor-market outcomes using mobile phone data. CGIAR Blog.
spellingShingle data
surveys
gender
labour market
machine learning
spatial data
Seymour, Greg
Follett, Lendie
Henderson, Heath
Estimating gender inequalities in labor-market outcomes using mobile phone data
title Estimating gender inequalities in labor-market outcomes using mobile phone data
title_full Estimating gender inequalities in labor-market outcomes using mobile phone data
title_fullStr Estimating gender inequalities in labor-market outcomes using mobile phone data
title_full_unstemmed Estimating gender inequalities in labor-market outcomes using mobile phone data
title_short Estimating gender inequalities in labor-market outcomes using mobile phone data
title_sort estimating gender inequalities in labor market outcomes using mobile phone data
topic data
surveys
gender
labour market
machine learning
spatial data
url https://hdl.handle.net/10568/137808
work_keys_str_mv AT seymourgreg estimatinggenderinequalitiesinlabormarketoutcomesusingmobilephonedata
AT follettlendie estimatinggenderinequalitiesinlabormarketoutcomesusingmobilephonedata
AT hendersonheath estimatinggenderinequalitiesinlabormarketoutcomesusingmobilephonedata