Water use efficiency across scales: From genes to landscapes
Water scarcity is already set to be one of the main issues of the 21st century, because of competing needs between civil, industrial, and agricultural use. Agriculture is currently the largest user of water, but its share is bound to decrease as societies develop and clearly it needs to become more...
| Main Authors: | , , , , , , , , , , , , |
|---|---|
| Format: | Journal Article |
| Language: | Inglés |
| Published: |
Oxford University Press
2023
|
| Subjects: | |
| Online Access: | https://hdl.handle.net/10568/134999 |
| _version_ | 1855527496439562240 |
|---|---|
| author | Vadez, Vincent Pilloni, Raphael Grondin, Alexandre Hajjarpoor, Amir Belhouchette, Hatem Brouziyne, Youssef Chehbouni, Ghani Kharrou, Mohamed Hakim Zitouna-Chebbi, Rim Mekki, Insaf Molénat, Jérôme Jacob, Frédéric Bossuet, Jérôme |
| author_browse | Belhouchette, Hatem Bossuet, Jérôme Brouziyne, Youssef Chehbouni, Ghani Grondin, Alexandre Hajjarpoor, Amir Jacob, Frédéric Kharrou, Mohamed Hakim Mekki, Insaf Molénat, Jérôme Pilloni, Raphael Vadez, Vincent Zitouna-Chebbi, Rim |
| author_facet | Vadez, Vincent Pilloni, Raphael Grondin, Alexandre Hajjarpoor, Amir Belhouchette, Hatem Brouziyne, Youssef Chehbouni, Ghani Kharrou, Mohamed Hakim Zitouna-Chebbi, Rim Mekki, Insaf Molénat, Jérôme Jacob, Frédéric Bossuet, Jérôme |
| author_sort | Vadez, Vincent |
| collection | Repository of Agricultural Research Outputs (CGSpace) |
| description | Water scarcity is already set to be one of the main issues of the 21st century, because of competing needs between civil, industrial, and agricultural use. Agriculture is currently the largest user of water, but its share is bound to decrease as societies develop and clearly it needs to become more water efficient. Improving water use efficiency (WUE) at the plant level is important but translating this at the farm/landscape level presents considerable challenges. As we move up from the scale of cells, organs, and plants to more integrated scales such as plots, fields, farm systems, and landscapes, other factors such as trade-offs need to be considered to try to improve WUE. These include choices of crop variety/species, farm management practices, landscape design, infrastructure development, and ecosystem functions, where human decisions matter. This review is a cross-disciplinary attempt to analyse approaches to addressing WUE at these different scales, including definitions of the metrics of analysis and consideration of trade-offs. The equations we present in this perspectives paper use similar metrics across scales to make them easier to connect and are developed to highlight which levers, at different scales, can improve WUE. We also refer to models operating at these different scales to assess WUE. While our entry point is plants and crops, we scale up the analysis of WUE to farm systems and landscapes. |
| format | Journal Article |
| id | CGSpace134999 |
| institution | CGIAR Consortium |
| language | Inglés |
| publishDate | 2023 |
| publishDateRange | 2023 |
| publishDateSort | 2023 |
| publisher | Oxford University Press |
| publisherStr | Oxford University Press |
| record_format | dspace |
| spelling | CGSpace1349992025-12-08T09:54:28Z Water use efficiency across scales: From genes to landscapes Vadez, Vincent Pilloni, Raphael Grondin, Alexandre Hajjarpoor, Amir Belhouchette, Hatem Brouziyne, Youssef Chehbouni, Ghani Kharrou, Mohamed Hakim Zitouna-Chebbi, Rim Mekki, Insaf Molénat, Jérôme Jacob, Frédéric Bossuet, Jérôme water resources climate change adaptation climate change plant breeding drought farming systems food security landscape water use water-use efficiency Water scarcity is already set to be one of the main issues of the 21st century, because of competing needs between civil, industrial, and agricultural use. Agriculture is currently the largest user of water, but its share is bound to decrease as societies develop and clearly it needs to become more water efficient. Improving water use efficiency (WUE) at the plant level is important but translating this at the farm/landscape level presents considerable challenges. As we move up from the scale of cells, organs, and plants to more integrated scales such as plots, fields, farm systems, and landscapes, other factors such as trade-offs need to be considered to try to improve WUE. These include choices of crop variety/species, farm management practices, landscape design, infrastructure development, and ecosystem functions, where human decisions matter. This review is a cross-disciplinary attempt to analyse approaches to addressing WUE at these different scales, including definitions of the metrics of analysis and consideration of trade-offs. The equations we present in this perspectives paper use similar metrics across scales to make them easier to connect and are developed to highlight which levers, at different scales, can improve WUE. We also refer to models operating at these different scales to assess WUE. While our entry point is plants and crops, we scale up the analysis of WUE to farm systems and landscapes. 2023-09-02 2023-12-04T21:55:27Z 2023-12-04T21:55:27Z Journal Article https://hdl.handle.net/10568/134999 en Open Access application/pdf Oxford University Press Vadez, Vincent; Pilloni, Raphael; Grondin, Alexandre; Hajjarpoor, Amir; et al. 2023. Water use efficiency across scales: From genes to landscapes. Journal of Experimental Botany 74(16): 4770-4788. https://doi.org/10.1093/jxb/erad052 |
| spellingShingle | water resources climate change adaptation climate change plant breeding drought farming systems food security landscape water use water-use efficiency Vadez, Vincent Pilloni, Raphael Grondin, Alexandre Hajjarpoor, Amir Belhouchette, Hatem Brouziyne, Youssef Chehbouni, Ghani Kharrou, Mohamed Hakim Zitouna-Chebbi, Rim Mekki, Insaf Molénat, Jérôme Jacob, Frédéric Bossuet, Jérôme Water use efficiency across scales: From genes to landscapes |
| title | Water use efficiency across scales: From genes to landscapes |
| title_full | Water use efficiency across scales: From genes to landscapes |
| title_fullStr | Water use efficiency across scales: From genes to landscapes |
| title_full_unstemmed | Water use efficiency across scales: From genes to landscapes |
| title_short | Water use efficiency across scales: From genes to landscapes |
| title_sort | water use efficiency across scales from genes to landscapes |
| topic | water resources climate change adaptation climate change plant breeding drought farming systems food security landscape water use water-use efficiency |
| url | https://hdl.handle.net/10568/134999 |
| work_keys_str_mv | AT vadezvincent wateruseefficiencyacrossscalesfromgenestolandscapes AT pilloniraphael wateruseefficiencyacrossscalesfromgenestolandscapes AT grondinalexandre wateruseefficiencyacrossscalesfromgenestolandscapes AT hajjarpooramir wateruseefficiencyacrossscalesfromgenestolandscapes AT belhouchettehatem wateruseefficiencyacrossscalesfromgenestolandscapes AT brouziyneyoussef wateruseefficiencyacrossscalesfromgenestolandscapes AT chehbounighani wateruseefficiencyacrossscalesfromgenestolandscapes AT kharroumohamedhakim wateruseefficiencyacrossscalesfromgenestolandscapes AT zitounachebbirim wateruseefficiencyacrossscalesfromgenestolandscapes AT mekkiinsaf wateruseefficiencyacrossscalesfromgenestolandscapes AT molenatjerome wateruseefficiencyacrossscalesfromgenestolandscapes AT jacobfrederic wateruseefficiencyacrossscalesfromgenestolandscapes AT bossuetjerome wateruseefficiencyacrossscalesfromgenestolandscapes |