Skip to content
VuFind
    • English
    • Español
Advanced
  • Use of machine learning approa...
  • Cite this
  • Text this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
  • Permanent link
Cover Image
QR Code

Use of machine learning approaches for quantification of red spider mite (Acari: Tetranychidae) damage in Urochloa sp.

Bibliographic Details
Main Authors: Espitia-Buitrago, Paula, Cotes-Torres, José M., Mating'i Kimani, Adrian, Chidawanyika, Frank, Hernández, Luis Miguel, Cardoso Arango, Juan Andrés, Jauregui, Rosa
Format: Poster
Language:Inglés
Published: International Center for Tropical Agriculture 2023
Subjects:
machine learning
tetranychidae
plant pests
pest resistance
urochloa
genotypes
Online Access:https://hdl.handle.net/10568/132802
  • Description
  • Similar Items
  • Staff View
Description
Description not available.

Similar Items

  • Plant damage assessment in Urochloa spp. to categorize resistance to spider mites (Acari: Tetranychidae) attack
    by: Espitia, Paula A., et al.
    Published: (2022)
  • Urochloa red spider mite (Acari: Tetranychidae) identification : morphological and molecular techniques
    by: Espitia, Paula, et al.
    Published: (2024)
  • Screening resistance levels of a panel of Urochloa spp. infested by spider mites at ICIPE-Mbita, Kenya (Acari: Tetranychidae)
    by: Kimani, Adrian, et al.
    Published: (2024)
  • Report on methodology for screening of spider mites resistance in a diversity panel
    by: Espitia, Paula A., et al.
    Published: (2021)
  • Survey of natural enemies of spider mites (Acari: Tetranychidae) in citrus orchards in eastern Spain
    by: Abad-Moyano, Raquel, et al.
    Published: (2017)

© Copyright 2026, Todos los Derechos Reservados UNA