Quantifying Non-Photosynthetic Vegetation in a Mixed Grassland Using Hyperspectral Data: A Case Study in Kenya

This study is a first attempt to quantify the non-photosynthetic vegetation (NPV) fraction at a semiarid grassland site located in Kenya. We have first applied a model already developed and calibrated for crop analysis to predict grassland NPV from field spectral reflectance data. The second step wi...

Descripción completa

Detalles Bibliográficos
Autores principales: Ceriani, R., Fava, F., Tagliabue, G., Leitner, Sonja, Panigada, C., Odongo, Vincent O., Vaglia, V., Mutuo, Paul M., Kinuthia, Kelvin, Heidarian, R., Fakherifard, K., Pepe, M.
Formato: Póster
Lenguaje:Inglés
Publicado: University of Milan 2023
Materias:
Acceso en línea:https://hdl.handle.net/10568/132515
_version_ 1855528666099875840
author Ceriani, R.
Fava, F.
Tagliabue, G.
Leitner, Sonja
Panigada, C.
Odongo, Vincent O.
Vaglia, V.
Mutuo, Paul M.
Kinuthia, Kelvin
Heidarian, R.
Fakherifard, K.
Pepe, M.
author_browse Ceriani, R.
Fakherifard, K.
Fava, F.
Heidarian, R.
Kinuthia, Kelvin
Leitner, Sonja
Mutuo, Paul M.
Odongo, Vincent O.
Panigada, C.
Pepe, M.
Tagliabue, G.
Vaglia, V.
author_facet Ceriani, R.
Fava, F.
Tagliabue, G.
Leitner, Sonja
Panigada, C.
Odongo, Vincent O.
Vaglia, V.
Mutuo, Paul M.
Kinuthia, Kelvin
Heidarian, R.
Fakherifard, K.
Pepe, M.
author_sort Ceriani, R.
collection Repository of Agricultural Research Outputs (CGSpace)
description This study is a first attempt to quantify the non-photosynthetic vegetation (NPV) fraction at a semiarid grassland site located in Kenya. We have first applied a model already developed and calibrated for crop analysis to predict grassland NPV from field spectral reflectance data. The second step will be to refine the model and apply it to the PRISMA image to obtain a quantitative map.
format Poster
id CGSpace132515
institution CGIAR Consortium
language Inglés
publishDate 2023
publishDateRange 2023
publishDateSort 2023
publisher University of Milan
publisherStr University of Milan
record_format dspace
spelling CGSpace1325152024-11-07T09:46:37Z Quantifying Non-Photosynthetic Vegetation in a Mixed Grassland Using Hyperspectral Data: A Case Study in Kenya Ceriani, R. Fava, F. Tagliabue, G. Leitner, Sonja Panigada, C. Odongo, Vincent O. Vaglia, V. Mutuo, Paul M. Kinuthia, Kelvin Heidarian, R. Fakherifard, K. Pepe, M. agroecosystems crop modelling remote sensing vegetation climate change This study is a first attempt to quantify the non-photosynthetic vegetation (NPV) fraction at a semiarid grassland site located in Kenya. We have first applied a model already developed and calibrated for crop analysis to predict grassland NPV from field spectral reflectance data. The second step will be to refine the model and apply it to the PRISMA image to obtain a quantitative map. 2023-09-25 2023-10-30T08:50:44Z 2023-10-30T08:50:44Z Poster https://hdl.handle.net/10568/132515 en Open Access application/pdf University of Milan Ceriani, R., Fava, F., Tagliabue G., Rossini M., Leitner, S., Panigada, C., Odongo, V., Vaglia, V., Mu-tuo, P., Kinuthia, K., Heidarian, R., Fakherifard, K., Pepe, M. 2023. Quantifying Non-Photosynthetic Vegetation in a Mixed Grassland Using Hyperspectral Data: A Case Study in Kenya. Poster prepared for the Agronomic research for green transition workshop, Portici, 25-27 September 2023. Milan, Italy: University of Milan.
spellingShingle agroecosystems
crop modelling
remote sensing
vegetation
climate change
Ceriani, R.
Fava, F.
Tagliabue, G.
Leitner, Sonja
Panigada, C.
Odongo, Vincent O.
Vaglia, V.
Mutuo, Paul M.
Kinuthia, Kelvin
Heidarian, R.
Fakherifard, K.
Pepe, M.
Quantifying Non-Photosynthetic Vegetation in a Mixed Grassland Using Hyperspectral Data: A Case Study in Kenya
title Quantifying Non-Photosynthetic Vegetation in a Mixed Grassland Using Hyperspectral Data: A Case Study in Kenya
title_full Quantifying Non-Photosynthetic Vegetation in a Mixed Grassland Using Hyperspectral Data: A Case Study in Kenya
title_fullStr Quantifying Non-Photosynthetic Vegetation in a Mixed Grassland Using Hyperspectral Data: A Case Study in Kenya
title_full_unstemmed Quantifying Non-Photosynthetic Vegetation in a Mixed Grassland Using Hyperspectral Data: A Case Study in Kenya
title_short Quantifying Non-Photosynthetic Vegetation in a Mixed Grassland Using Hyperspectral Data: A Case Study in Kenya
title_sort quantifying non photosynthetic vegetation in a mixed grassland using hyperspectral data a case study in kenya
topic agroecosystems
crop modelling
remote sensing
vegetation
climate change
url https://hdl.handle.net/10568/132515
work_keys_str_mv AT cerianir quantifyingnonphotosyntheticvegetationinamixedgrasslandusinghyperspectraldataacasestudyinkenya
AT favaf quantifyingnonphotosyntheticvegetationinamixedgrasslandusinghyperspectraldataacasestudyinkenya
AT tagliabueg quantifyingnonphotosyntheticvegetationinamixedgrasslandusinghyperspectraldataacasestudyinkenya
AT leitnersonja quantifyingnonphotosyntheticvegetationinamixedgrasslandusinghyperspectraldataacasestudyinkenya
AT panigadac quantifyingnonphotosyntheticvegetationinamixedgrasslandusinghyperspectraldataacasestudyinkenya
AT odongovincento quantifyingnonphotosyntheticvegetationinamixedgrasslandusinghyperspectraldataacasestudyinkenya
AT vagliav quantifyingnonphotosyntheticvegetationinamixedgrasslandusinghyperspectraldataacasestudyinkenya
AT mutuopaulm quantifyingnonphotosyntheticvegetationinamixedgrasslandusinghyperspectraldataacasestudyinkenya
AT kinuthiakelvin quantifyingnonphotosyntheticvegetationinamixedgrasslandusinghyperspectraldataacasestudyinkenya
AT heidarianr quantifyingnonphotosyntheticvegetationinamixedgrasslandusinghyperspectraldataacasestudyinkenya
AT fakherifardk quantifyingnonphotosyntheticvegetationinamixedgrasslandusinghyperspectraldataacasestudyinkenya
AT pepem quantifyingnonphotosyntheticvegetationinamixedgrasslandusinghyperspectraldataacasestudyinkenya