Characterizing patterns of seasonal drought stress for use in common bean breeding in East Africa under present and future climates
Common bean (Phaseolus vulgaris L.) is the second most important source of dietary protein and the third most important source of calories in Africa, especially for the poor. In East Africa, drought is an important constraint to bean production. Therefore, breeding programs in East Africa have been...
| Autores principales: | , , , , |
|---|---|
| Formato: | Journal Article |
| Lenguaje: | Inglés |
| Publicado: |
Elsevier
2023
|
| Materias: | |
| Acceso en línea: | https://hdl.handle.net/10568/132184 |
| _version_ | 1855540161942650880 |
|---|---|
| author | Jha, Prakash K. Beebe, Steve Álvarez Toro, Patricia Mukankusi, Clare Ramírez Villegas, Julián Armando |
| author_browse | Beebe, Steve Jha, Prakash K. Mukankusi, Clare Ramírez Villegas, Julián Armando Álvarez Toro, Patricia |
| author_facet | Jha, Prakash K. Beebe, Steve Álvarez Toro, Patricia Mukankusi, Clare Ramírez Villegas, Julián Armando |
| author_sort | Jha, Prakash K. |
| collection | Repository of Agricultural Research Outputs (CGSpace) |
| description | Common bean (Phaseolus vulgaris L.) is the second most important source of dietary protein and the third most important source of calories in Africa, especially for the poor. In East Africa, drought is an important constraint to bean production. Therefore, breeding programs in East Africa have been trying to develop drought resistant varieties of common bean. To do this, breeders need information about seasonal drought stress patterns including their onset, intensity, and duration in the target area of the breeding program, so that they can mimic this pattern during field trials. Using the Decision Support for Agrotechnology Transfer (DSSAT) v4.7 model together with historical and future (Coupled Model Inter-comparison Project 6, CMIP6) climate data, this study categorized Ethiopia, Tanzania, and Uganda into different target population of environments (TPEs) based on historical and future seasonal drought stress patterns. We find that stress-free conditions generally dominate across the three countries under historical conditions (50–80% frequency). These conditions are projected to increase in frequency in Ethiopia by 2–10% but the converse is true for Tanzania (2–8% reduction) and Uganda (17–20% reduction) by 2050 depending on the Shared Socioeconomic Pathway (SSP). Accordingly, by 2050, terminal drought stresses of various intensities (moderate, severe, extreme) are prevalent in 34% of Uganda, around a quarter of Ethiopia, and 40% of the bean growing environments in Tanzania. The TPEs identified in each country serve as a basis for prioritizing breeding activities in national programs. However, to optimize resource use in international breeding programs to develop genotypes that are resilient to future projected stress patterns, we argue that common bean breeding programs should focus primarily on identifying genotypes with tolerance to severe terminal drought, with co-benefits in relation to adaptation to moderate and extreme terminal drought. Little to no emphasis on heat stress is warranted by 2050s. |
| format | Journal Article |
| id | CGSpace132184 |
| institution | CGIAR Consortium |
| language | Inglés |
| publishDate | 2023 |
| publishDateRange | 2023 |
| publishDateSort | 2023 |
| publisher | Elsevier |
| publisherStr | Elsevier |
| record_format | dspace |
| spelling | CGSpace1321842025-11-11T19:06:46Z Characterizing patterns of seasonal drought stress for use in common bean breeding in East Africa under present and future climates Jha, Prakash K. Beebe, Steve Álvarez Toro, Patricia Mukankusi, Clare Ramírez Villegas, Julián Armando beans crop improvement climate change climate change adaptation drought stress-water stress computer applications crop production crop modelling Common bean (Phaseolus vulgaris L.) is the second most important source of dietary protein and the third most important source of calories in Africa, especially for the poor. In East Africa, drought is an important constraint to bean production. Therefore, breeding programs in East Africa have been trying to develop drought resistant varieties of common bean. To do this, breeders need information about seasonal drought stress patterns including their onset, intensity, and duration in the target area of the breeding program, so that they can mimic this pattern during field trials. Using the Decision Support for Agrotechnology Transfer (DSSAT) v4.7 model together with historical and future (Coupled Model Inter-comparison Project 6, CMIP6) climate data, this study categorized Ethiopia, Tanzania, and Uganda into different target population of environments (TPEs) based on historical and future seasonal drought stress patterns. We find that stress-free conditions generally dominate across the three countries under historical conditions (50–80% frequency). These conditions are projected to increase in frequency in Ethiopia by 2–10% but the converse is true for Tanzania (2–8% reduction) and Uganda (17–20% reduction) by 2050 depending on the Shared Socioeconomic Pathway (SSP). Accordingly, by 2050, terminal drought stresses of various intensities (moderate, severe, extreme) are prevalent in 34% of Uganda, around a quarter of Ethiopia, and 40% of the bean growing environments in Tanzania. The TPEs identified in each country serve as a basis for prioritizing breeding activities in national programs. However, to optimize resource use in international breeding programs to develop genotypes that are resilient to future projected stress patterns, we argue that common bean breeding programs should focus primarily on identifying genotypes with tolerance to severe terminal drought, with co-benefits in relation to adaptation to moderate and extreme terminal drought. Little to no emphasis on heat stress is warranted by 2050s. 2023-11 2023-10-09T15:02:23Z 2023-10-09T15:02:23Z Journal Article https://hdl.handle.net/10568/132184 en Open Access application/pdf Elsevier Jha, P.K.; Beebe, S.; Alvareztoro, P.; Mukankusi, C.; Ramirez-Villegas, J. (2023) Characterizing patterns of seasonal drought stress for use in common bean breeding in East Africa under present and future climates. Agricultural and Forest Meteorology 342: 109735. ISSN: 0168-1923 |
| spellingShingle | beans crop improvement climate change climate change adaptation drought stress-water stress computer applications crop production crop modelling Jha, Prakash K. Beebe, Steve Álvarez Toro, Patricia Mukankusi, Clare Ramírez Villegas, Julián Armando Characterizing patterns of seasonal drought stress for use in common bean breeding in East Africa under present and future climates |
| title | Characterizing patterns of seasonal drought stress for use in common bean breeding in East Africa under present and future climates |
| title_full | Characterizing patterns of seasonal drought stress for use in common bean breeding in East Africa under present and future climates |
| title_fullStr | Characterizing patterns of seasonal drought stress for use in common bean breeding in East Africa under present and future climates |
| title_full_unstemmed | Characterizing patterns of seasonal drought stress for use in common bean breeding in East Africa under present and future climates |
| title_short | Characterizing patterns of seasonal drought stress for use in common bean breeding in East Africa under present and future climates |
| title_sort | characterizing patterns of seasonal drought stress for use in common bean breeding in east africa under present and future climates |
| topic | beans crop improvement climate change climate change adaptation drought stress-water stress computer applications crop production crop modelling |
| url | https://hdl.handle.net/10568/132184 |
| work_keys_str_mv | AT jhaprakashk characterizingpatternsofseasonaldroughtstressforuseincommonbeanbreedingineastafricaunderpresentandfutureclimates AT beebesteve characterizingpatternsofseasonaldroughtstressforuseincommonbeanbreedingineastafricaunderpresentandfutureclimates AT alvareztoropatricia characterizingpatternsofseasonaldroughtstressforuseincommonbeanbreedingineastafricaunderpresentandfutureclimates AT mukankusiclare characterizingpatternsofseasonaldroughtstressforuseincommonbeanbreedingineastafricaunderpresentandfutureclimates AT ramirezvillegasjulianarmando characterizingpatternsofseasonaldroughtstressforuseincommonbeanbreedingineastafricaunderpresentandfutureclimates |