Are there memory effects on greenhouse gas emissions (CO2, N2O and CH4) following grassland restoration?
Abstract. A 5-year greenhouse gas (GHG) exchange study of the three major gas species (CO2, CH4 and N2O) from an intensively managed permanent grassland in Switzerland is presented. Measurements comprise 2 years (2010 and 2011) of manual static chamber measurements of CH4 and N2O, 5 years of continu...
| Autores principales: | , , , , , , |
|---|---|
| Formato: | Journal Article |
| Lenguaje: | Inglés |
| Publicado: |
Copernicus GmbH
2021
|
| Materias: | |
| Acceso en línea: | https://hdl.handle.net/10568/129339 |
| _version_ | 1855518057795944448 |
|---|---|
| author | Merbold, Lutz Decock, Charlotte Eugster, Werner Fuchs, Kathrin Wolf, Benjamin Buchmann, Nina Hörtnagl, Lukas |
| author_browse | Buchmann, Nina Decock, Charlotte Eugster, Werner Fuchs, Kathrin Hörtnagl, Lukas Merbold, Lutz Wolf, Benjamin |
| author_facet | Merbold, Lutz Decock, Charlotte Eugster, Werner Fuchs, Kathrin Wolf, Benjamin Buchmann, Nina Hörtnagl, Lukas |
| author_sort | Merbold, Lutz |
| collection | Repository of Agricultural Research Outputs (CGSpace) |
| description | Abstract. A 5-year greenhouse gas (GHG) exchange study of the three major gas species (CO2, CH4 and N2O) from an intensively managed permanent grassland in Switzerland is presented. Measurements comprise 2 years (2010 and 2011) of manual static chamber measurements of CH4 and N2O, 5 years of continuous eddy covariance (EC) measurements (CO2–H2O – 2010–2014), and 3 years (2012–2014) of EC measurement of CH4 and N2O. Intensive grassland management included both regular and sporadic management activities. Regular management practices encompassed mowing (three to five cuts per year) with subsequent organic fertilizer amendments and occasional grazing, whereas sporadic management activities comprised grazing or similar activities. The primary objective of our measurements was to compare pre-plowing to post-plowing GHG exchange and to identify potential memory effects of such a substantial disturbance on GHG exchange and carbon (C) and nitrogen (N) gains and losses. In order to include measurements carried out with different observation techniques, we tested two different measurement techniques jointly in 2013, namely the manual static chamber approach and the eddy covariance technique for N2O, to quantify the GHG exchange from the observed grassland site. Our results showed that there were no memory effects on N2O and CH4 emissions after plowing, whereas the CO2 uptake of the site considerably increased when compared to pre-restoration years. In detail, we observed large losses of CO2 and N2O during the year of restoration. In contrast, the grassland acted as a carbon sink under usual management, i.e., the time periods 2010–2011 and 2013–2014. Enhanced emissions and emission peaks of N2O (defined as exceeding background emissions 0.21 ± 0.55 nmol m−2 s−1 (SE = 0.02) for at least 2 sequential days and the 7 d moving average exceeding background emissions) were observed for almost 7 continuous months after restoration as well as following organic fertilizer applications during all years. Net ecosystem exchange of CO2 (NEECO2) showed a common pattern of increased uptake of CO2 in spring and reduced uptake in late fall. NEECO2 dropped to zero and became positive after each harvest event. Methane (CH4) exchange fluctuated around zero during all years. Overall, CH4 exchange was of negligible importance for both the GHG budget and the carbon budget of the site. Our results stress the inclusion of grassland restoration events when providing cumulative sums of C sequestration potential and/or global warming potential (GWP). Consequently, this study further highlights the need for continuous long-term GHG exchange observations as well as for the implementation of our findings into biogeochemical process models to track potential GHG mitigation objectives as well as to predict future GHG emission scenarios reliably. |
| format | Journal Article |
| id | CGSpace129339 |
| institution | CGIAR Consortium |
| language | Inglés |
| publishDate | 2021 |
| publishDateRange | 2021 |
| publishDateSort | 2021 |
| publisher | Copernicus GmbH |
| publisherStr | Copernicus GmbH |
| record_format | dspace |
| spelling | CGSpace1293392025-12-08T09:54:28Z Are there memory effects on greenhouse gas emissions (CO2, N2O and CH4) following grassland restoration? Merbold, Lutz Decock, Charlotte Eugster, Werner Fuchs, Kathrin Wolf, Benjamin Buchmann, Nina Hörtnagl, Lukas greenhouse gas emissions restoration effects memory gas emissions Abstract. A 5-year greenhouse gas (GHG) exchange study of the three major gas species (CO2, CH4 and N2O) from an intensively managed permanent grassland in Switzerland is presented. Measurements comprise 2 years (2010 and 2011) of manual static chamber measurements of CH4 and N2O, 5 years of continuous eddy covariance (EC) measurements (CO2–H2O – 2010–2014), and 3 years (2012–2014) of EC measurement of CH4 and N2O. Intensive grassland management included both regular and sporadic management activities. Regular management practices encompassed mowing (three to five cuts per year) with subsequent organic fertilizer amendments and occasional grazing, whereas sporadic management activities comprised grazing or similar activities. The primary objective of our measurements was to compare pre-plowing to post-plowing GHG exchange and to identify potential memory effects of such a substantial disturbance on GHG exchange and carbon (C) and nitrogen (N) gains and losses. In order to include measurements carried out with different observation techniques, we tested two different measurement techniques jointly in 2013, namely the manual static chamber approach and the eddy covariance technique for N2O, to quantify the GHG exchange from the observed grassland site. Our results showed that there were no memory effects on N2O and CH4 emissions after plowing, whereas the CO2 uptake of the site considerably increased when compared to pre-restoration years. In detail, we observed large losses of CO2 and N2O during the year of restoration. In contrast, the grassland acted as a carbon sink under usual management, i.e., the time periods 2010–2011 and 2013–2014. Enhanced emissions and emission peaks of N2O (defined as exceeding background emissions 0.21 ± 0.55 nmol m−2 s−1 (SE = 0.02) for at least 2 sequential days and the 7 d moving average exceeding background emissions) were observed for almost 7 continuous months after restoration as well as following organic fertilizer applications during all years. Net ecosystem exchange of CO2 (NEECO2) showed a common pattern of increased uptake of CO2 in spring and reduced uptake in late fall. NEECO2 dropped to zero and became positive after each harvest event. Methane (CH4) exchange fluctuated around zero during all years. Overall, CH4 exchange was of negligible importance for both the GHG budget and the carbon budget of the site. Our results stress the inclusion of grassland restoration events when providing cumulative sums of C sequestration potential and/or global warming potential (GWP). Consequently, this study further highlights the need for continuous long-term GHG exchange observations as well as for the implementation of our findings into biogeochemical process models to track potential GHG mitigation objectives as well as to predict future GHG emission scenarios reliably. 2021-03-02 2023-03-10T14:33:27Z 2023-03-10T14:33:27Z Journal Article https://hdl.handle.net/10568/129339 en Open Access Copernicus GmbH Merbold, Lutz; Decock, Charlotte; Eugster, Werner; Fuchs, Kathrin; Wolf, Benjamin; Buchmann, Nina; Hörtnagl, Lukas. 2021. Are there memory effects on greenhouse gas emissions CO2, N2O and CH4 following grassland restoration?. Biogeosciences 18: 1481-1498 |
| spellingShingle | greenhouse gas emissions restoration effects memory gas emissions Merbold, Lutz Decock, Charlotte Eugster, Werner Fuchs, Kathrin Wolf, Benjamin Buchmann, Nina Hörtnagl, Lukas Are there memory effects on greenhouse gas emissions (CO2, N2O and CH4) following grassland restoration? |
| title | Are there memory effects on greenhouse gas emissions (CO2, N2O and CH4) following grassland restoration? |
| title_full | Are there memory effects on greenhouse gas emissions (CO2, N2O and CH4) following grassland restoration? |
| title_fullStr | Are there memory effects on greenhouse gas emissions (CO2, N2O and CH4) following grassland restoration? |
| title_full_unstemmed | Are there memory effects on greenhouse gas emissions (CO2, N2O and CH4) following grassland restoration? |
| title_short | Are there memory effects on greenhouse gas emissions (CO2, N2O and CH4) following grassland restoration? |
| title_sort | are there memory effects on greenhouse gas emissions co2 n2o and ch4 following grassland restoration |
| topic | greenhouse gas emissions restoration effects memory gas emissions |
| url | https://hdl.handle.net/10568/129339 |
| work_keys_str_mv | AT merboldlutz aretherememoryeffectsongreenhousegasemissionsco2n2oandch4followinggrasslandrestoration AT decockcharlotte aretherememoryeffectsongreenhousegasemissionsco2n2oandch4followinggrasslandrestoration AT eugsterwerner aretherememoryeffectsongreenhousegasemissionsco2n2oandch4followinggrasslandrestoration AT fuchskathrin aretherememoryeffectsongreenhousegasemissionsco2n2oandch4followinggrasslandrestoration AT wolfbenjamin aretherememoryeffectsongreenhousegasemissionsco2n2oandch4followinggrasslandrestoration AT buchmannnina aretherememoryeffectsongreenhousegasemissionsco2n2oandch4followinggrasslandrestoration AT hortnagllukas aretherememoryeffectsongreenhousegasemissionsco2n2oandch4followinggrasslandrestoration |