Bayesian modelling of phosphorus content in wheat grain using hyperspectral reflectance data
Background: As a result of the technological progress, the use of sensors for crop survey has substantially increased, generating valuable information for modelling agricultural data. Plant spectroscopy jointly with statistical modeling can potentially help to assess certain chemical components of i...
| Autores principales: | , , , , , , , , |
|---|---|
| Formato: | Journal Article |
| Lenguaje: | Inglés |
| Publicado: |
Springer
2023
|
| Materias: | |
| Acceso en línea: | https://hdl.handle.net/10568/128350 |
Ejemplares similares: Bayesian modelling of phosphorus content in wheat grain using hyperspectral reflectance data
- A Bayesian optimization R package for multitrait parental selection
- An approach for improving the sampling efficiency in the Bayesian calibration of computationally expensive simulation models
- Estimating the supply elasticity of cotton in Mali with the Nerlove Model: A bayesian method of moments approach:
- Closing the gaps in experimental and observational crop response estimates: a Bayesian approach
- Bayesian multitrait kernel methods improve multienvironment genome-based prediction
- Bayesian divergence-based approach for genomic multitrait ordinal selection