Amplitude response, Melnikov’s criteria, and chaos occurrence in a Duffing’s system subjected to an external periodic excitation with a variable shape

The present study considers the nonlinear dynamics of a Duffing oscillator under a symmetric potential subjected to a pulse-type excitation with a deformable shape. Our attention is focused on the effects of the external excitation shape parameter 𝑟 and its period. The frequency response of the syst...

Descripción completa

Detalles Bibliográficos
Autores principales: Ndjomatchoua, Frank T., Djomo, Thierry L.M., Kemwoue, Florent F., Gninzanlong, Carlos Lawrence, Kepnang, Maxime P., Siewe, Martin S., Tchawoua, Clément, Pedro, Sansao A., Kofane, Timoleon C.
Formato: Journal Article
Lenguaje:Inglés
Publicado: AIP Publishing 2022
Materias:
Acceso en línea:https://hdl.handle.net/10568/127842
_version_ 1855535578520485888
author Ndjomatchoua, Frank T.
Djomo, Thierry L.M.
Kemwoue, Florent F.
Gninzanlong, Carlos Lawrence
Kepnang, Maxime P.
Siewe, Martin S.
Tchawoua, Clément
Pedro, Sansao A.
Kofane, Timoleon C.
author_browse Djomo, Thierry L.M.
Gninzanlong, Carlos Lawrence
Kemwoue, Florent F.
Kepnang, Maxime P.
Kofane, Timoleon C.
Ndjomatchoua, Frank T.
Pedro, Sansao A.
Siewe, Martin S.
Tchawoua, Clément
author_facet Ndjomatchoua, Frank T.
Djomo, Thierry L.M.
Kemwoue, Florent F.
Gninzanlong, Carlos Lawrence
Kepnang, Maxime P.
Siewe, Martin S.
Tchawoua, Clément
Pedro, Sansao A.
Kofane, Timoleon C.
author_sort Ndjomatchoua, Frank T.
collection Repository of Agricultural Research Outputs (CGSpace)
description The present study considers the nonlinear dynamics of a Duffing oscillator under a symmetric potential subjected to a pulse-type excitation with a deformable shape. Our attention is focused on the effects of the external excitation shape parameter 𝑟 and its period. The frequency response of the system is derived by using a semi-analytical approach. Interestingly, the frequency–response curve displays a large number of resonance peaks and anti-resonance peaks as well. Surprisingly, a resonance phenomenon termed here as shape-induced-resonance is noticed as it occurs solely due to the change in the shape parameter of the external periodic force. The system exhibits amplitude jumps and hysteresis depending on 𝑟. The critical driving magnitude for the chaos occurrence is investigated through Melnikov’s method. Numerical analysis based on bifurcation diagrams and Lyapunov exponent is used to show how chaos occurs in the system. It is shown that the threshold amplitude of the excitation to observe chaotic dynamics decreases/increases for small/large values of 𝑟. In general, the theoretical estimates match with numerical simulations and electronic simulations as well.
format Journal Article
id CGSpace127842
institution CGIAR Consortium
language Inglés
publishDate 2022
publishDateRange 2022
publishDateSort 2022
publisher AIP Publishing
publisherStr AIP Publishing
record_format dspace
spelling CGSpace1278422025-10-26T12:56:24Z Amplitude response, Melnikov’s criteria, and chaos occurrence in a Duffing’s system subjected to an external periodic excitation with a variable shape Ndjomatchoua, Frank T. Djomo, Thierry L.M. Kemwoue, Florent F. Gninzanlong, Carlos Lawrence Kepnang, Maxime P. Siewe, Martin S. Tchawoua, Clément Pedro, Sansao A. Kofane, Timoleon C. amplitude chaos theory The present study considers the nonlinear dynamics of a Duffing oscillator under a symmetric potential subjected to a pulse-type excitation with a deformable shape. Our attention is focused on the effects of the external excitation shape parameter 𝑟 and its period. The frequency response of the system is derived by using a semi-analytical approach. Interestingly, the frequency–response curve displays a large number of resonance peaks and anti-resonance peaks as well. Surprisingly, a resonance phenomenon termed here as shape-induced-resonance is noticed as it occurs solely due to the change in the shape parameter of the external periodic force. The system exhibits amplitude jumps and hysteresis depending on 𝑟. The critical driving magnitude for the chaos occurrence is investigated through Melnikov’s method. Numerical analysis based on bifurcation diagrams and Lyapunov exponent is used to show how chaos occurs in the system. It is shown that the threshold amplitude of the excitation to observe chaotic dynamics decreases/increases for small/large values of 𝑟. In general, the theoretical estimates match with numerical simulations and electronic simulations as well. 2022-08-01 2023-01-23T08:21:59Z 2023-01-23T08:21:59Z Journal Article https://hdl.handle.net/10568/127842 en Limited Access AIP Publishing Ndjomatchoua, Frank T., Thierry LM Djomo, Florent F. Kemwoue, Carlos L. Gninzanlong, Maxime P. Kepnang, Martin S. Siewe, Clément Tchawoua, Sansao A. Pedro, and Timoleon C. Kofane. 2022. Amplitude response, Melnikov’s criteria, and chaos occurrence in a Duffing’s system subjected to an external periodic excitation with a variable shape. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(8):083144.
spellingShingle amplitude
chaos theory
Ndjomatchoua, Frank T.
Djomo, Thierry L.M.
Kemwoue, Florent F.
Gninzanlong, Carlos Lawrence
Kepnang, Maxime P.
Siewe, Martin S.
Tchawoua, Clément
Pedro, Sansao A.
Kofane, Timoleon C.
Amplitude response, Melnikov’s criteria, and chaos occurrence in a Duffing’s system subjected to an external periodic excitation with a variable shape
title Amplitude response, Melnikov’s criteria, and chaos occurrence in a Duffing’s system subjected to an external periodic excitation with a variable shape
title_full Amplitude response, Melnikov’s criteria, and chaos occurrence in a Duffing’s system subjected to an external periodic excitation with a variable shape
title_fullStr Amplitude response, Melnikov’s criteria, and chaos occurrence in a Duffing’s system subjected to an external periodic excitation with a variable shape
title_full_unstemmed Amplitude response, Melnikov’s criteria, and chaos occurrence in a Duffing’s system subjected to an external periodic excitation with a variable shape
title_short Amplitude response, Melnikov’s criteria, and chaos occurrence in a Duffing’s system subjected to an external periodic excitation with a variable shape
title_sort amplitude response melnikov s criteria and chaos occurrence in a duffing s system subjected to an external periodic excitation with a variable shape
topic amplitude
chaos theory
url https://hdl.handle.net/10568/127842
work_keys_str_mv AT ndjomatchouafrankt amplituderesponsemelnikovscriteriaandchaosoccurrenceinaduffingssystemsubjectedtoanexternalperiodicexcitationwithavariableshape
AT djomothierrylm amplituderesponsemelnikovscriteriaandchaosoccurrenceinaduffingssystemsubjectedtoanexternalperiodicexcitationwithavariableshape
AT kemwoueflorentf amplituderesponsemelnikovscriteriaandchaosoccurrenceinaduffingssystemsubjectedtoanexternalperiodicexcitationwithavariableshape
AT gninzanlongcarloslawrence amplituderesponsemelnikovscriteriaandchaosoccurrenceinaduffingssystemsubjectedtoanexternalperiodicexcitationwithavariableshape
AT kepnangmaximep amplituderesponsemelnikovscriteriaandchaosoccurrenceinaduffingssystemsubjectedtoanexternalperiodicexcitationwithavariableshape
AT siewemartins amplituderesponsemelnikovscriteriaandchaosoccurrenceinaduffingssystemsubjectedtoanexternalperiodicexcitationwithavariableshape
AT tchawouaclement amplituderesponsemelnikovscriteriaandchaosoccurrenceinaduffingssystemsubjectedtoanexternalperiodicexcitationwithavariableshape
AT pedrosansaoa amplituderesponsemelnikovscriteriaandchaosoccurrenceinaduffingssystemsubjectedtoanexternalperiodicexcitationwithavariableshape
AT kofanetimoleonc amplituderesponsemelnikovscriteriaandchaosoccurrenceinaduffingssystemsubjectedtoanexternalperiodicexcitationwithavariableshape