Interpretable machine learning methods to explain on-farm yield variability of high productivity wheat in Northwest India

The increasing availability of complex, geo-referenced on-farm data demands analytical frameworks that can guide crop management recommendations. Recent developments in interpretable machine learning techniques offer opportunities to use these methods in agronomic studies. Our objectives were two-fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Nayak, Harisankar, Silva, ‪João Vasco, Parihar, Chiter Mal, Krupnik, Timothy J., Sena, Dipaka Ranjan, Kakraliya, S., Jat, Hanuman Sahay, Sidhu, Harminder Singh, Sharma, Parbodh Chander, Jat, Mangi Lal, Sapkota, Tek Bahadur
Formato: Journal Article
Lenguaje:Inglés
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://hdl.handle.net/10568/127194

Ejemplares similares: Interpretable machine learning methods to explain on-farm yield variability of high productivity wheat in Northwest India