Harnessing Machine Learning to Estimate Aquaculture’s Contributions to the Economy of Southwest Bangladesh

Abstract accepted for presentation at the Annual Meeting of the World Aquaculture Society held in Singapore on 29 November to 2 December 2022. The presentation detailed the use of machine learning techniques to extract information from freely available satellite images and estimate the area of water...

Descripción completa

Detalles Bibliográficos
Autores principales: Belton, Ben, Haque, Mohammad Mahfujul, Ali, Hazrat, Nejadhashemi, Amir Pouyan, Hernández, Ricardo, Khondker, Murshed-E-Jahan, Ferriby, Hannah
Formato: Resumen
Lenguaje:Inglés
Publicado: 2022
Materias:
Acceso en línea:https://hdl.handle.net/10568/127166
_version_ 1855533380001595392
author Belton, Ben
Haque, Mohammad Mahfujul
Ali, Hazrat
Nejadhashemi, Amir Pouyan
Hernández, Ricardo
Khondker, Murshed-E-Jahan
Ferriby, Hannah
author_browse Ali, Hazrat
Belton, Ben
Ferriby, Hannah
Haque, Mohammad Mahfujul
Hernández, Ricardo
Khondker, Murshed-E-Jahan
Nejadhashemi, Amir Pouyan
author_facet Belton, Ben
Haque, Mohammad Mahfujul
Ali, Hazrat
Nejadhashemi, Amir Pouyan
Hernández, Ricardo
Khondker, Murshed-E-Jahan
Ferriby, Hannah
author_sort Belton, Ben
collection Repository of Agricultural Research Outputs (CGSpace)
description Abstract accepted for presentation at the Annual Meeting of the World Aquaculture Society held in Singapore on 29 November to 2 December 2022. The presentation detailed the use of machine learning techniques to extract information from freely available satellite images and estimate the area of waterbodies used for aquaculture in seven districts in southern Bangladesh, one of country’s most important aquaculture zones producing fish for domestic markets and crustaceans for export.
format Abstract
id CGSpace127166
institution CGIAR Consortium
language Inglés
publishDate 2022
publishDateRange 2022
publishDateSort 2022
record_format dspace
spelling CGSpace1271662025-01-09T16:57:51Z Harnessing Machine Learning to Estimate Aquaculture’s Contributions to the Economy of Southwest Bangladesh Belton, Ben Haque, Mohammad Mahfujul Ali, Hazrat Nejadhashemi, Amir Pouyan Hernández, Ricardo Khondker, Murshed-E-Jahan Ferriby, Hannah climate change food systems deltas Abstract accepted for presentation at the Annual Meeting of the World Aquaculture Society held in Singapore on 29 November to 2 December 2022. The presentation detailed the use of machine learning techniques to extract information from freely available satellite images and estimate the area of waterbodies used for aquaculture in seven districts in southern Bangladesh, one of country’s most important aquaculture zones producing fish for domestic markets and crustaceans for export. 2022-12-01 2023-01-16T09:09:27Z 2023-01-16T09:09:27Z Abstract https://hdl.handle.net/10568/127166 en Open Access application/pdf Belton, B., Haque, M. M., Ali, H., Nejadhashemi, A. P., Hernandez, R. A., Khondker, M. and Ferriby, H. 2022. Harnessing Machine Learning to Estimate Aquaculture’s Contributions to the Economy of Southwest Bangladesh. Paper abstract submitted to the World Aquaculture Society, Singapore, 1 December 2022
spellingShingle climate change
food systems
deltas
Belton, Ben
Haque, Mohammad Mahfujul
Ali, Hazrat
Nejadhashemi, Amir Pouyan
Hernández, Ricardo
Khondker, Murshed-E-Jahan
Ferriby, Hannah
Harnessing Machine Learning to Estimate Aquaculture’s Contributions to the Economy of Southwest Bangladesh
title Harnessing Machine Learning to Estimate Aquaculture’s Contributions to the Economy of Southwest Bangladesh
title_full Harnessing Machine Learning to Estimate Aquaculture’s Contributions to the Economy of Southwest Bangladesh
title_fullStr Harnessing Machine Learning to Estimate Aquaculture’s Contributions to the Economy of Southwest Bangladesh
title_full_unstemmed Harnessing Machine Learning to Estimate Aquaculture’s Contributions to the Economy of Southwest Bangladesh
title_short Harnessing Machine Learning to Estimate Aquaculture’s Contributions to the Economy of Southwest Bangladesh
title_sort harnessing machine learning to estimate aquaculture s contributions to the economy of southwest bangladesh
topic climate change
food systems
deltas
url https://hdl.handle.net/10568/127166
work_keys_str_mv AT beltonben harnessingmachinelearningtoestimateaquaculturescontributionstotheeconomyofsouthwestbangladesh
AT haquemohammadmahfujul harnessingmachinelearningtoestimateaquaculturescontributionstotheeconomyofsouthwestbangladesh
AT alihazrat harnessingmachinelearningtoestimateaquaculturescontributionstotheeconomyofsouthwestbangladesh
AT nejadhashemiamirpouyan harnessingmachinelearningtoestimateaquaculturescontributionstotheeconomyofsouthwestbangladesh
AT hernandezricardo harnessingmachinelearningtoestimateaquaculturescontributionstotheeconomyofsouthwestbangladesh
AT khondkermurshedejahan harnessingmachinelearningtoestimateaquaculturescontributionstotheeconomyofsouthwestbangladesh
AT ferribyhannah harnessingmachinelearningtoestimateaquaculturescontributionstotheeconomyofsouthwestbangladesh