Harnessing Machine Learning to Estimate Aquaculture’s Contributions to The Economy of Southwest Bangladesh

The presentation detailed the use of machine learning techniques to extract information from freely available satellite images and estimate the area of waterbodies used for aquaculture in seven districts in southern Bangladesh, one of country’s most important aquaculture zones producing fish for dom...

Descripción completa

Detalles Bibliográficos
Autores principales: Belton, Ben, Haque, Mohammad Mahfujul, Ali, Hazrat, Nejadhashemi, Amir Pouyan, Hernández, Ricardo, Khondker, Murshed-E-Jahan, Ferriby, Hannah
Formato: Ponencia
Lenguaje:Inglés
Publicado: WorldFish 2022
Materias:
Acceso en línea:https://hdl.handle.net/10568/127061
_version_ 1855540964152573952
author Belton, Ben
Haque, Mohammad Mahfujul
Ali, Hazrat
Nejadhashemi, Amir Pouyan
Hernández, Ricardo
Khondker, Murshed-E-Jahan
Ferriby, Hannah
author_browse Ali, Hazrat
Belton, Ben
Ferriby, Hannah
Haque, Mohammad Mahfujul
Hernández, Ricardo
Khondker, Murshed-E-Jahan
Nejadhashemi, Amir Pouyan
author_facet Belton, Ben
Haque, Mohammad Mahfujul
Ali, Hazrat
Nejadhashemi, Amir Pouyan
Hernández, Ricardo
Khondker, Murshed-E-Jahan
Ferriby, Hannah
author_sort Belton, Ben
collection Repository of Agricultural Research Outputs (CGSpace)
description The presentation detailed the use of machine learning techniques to extract information from freely available satellite images and estimate the area of waterbodies used for aquaculture in seven districts in southern Bangladesh, one of country’s most important aquaculture zones producing fish for domestic markets and crustaceans for export. The research combined machine learning derived estimates of aquaculture farm area per district with data from statistically representative farm surveys to estimate farm size, productivity, and total output, economic value of production, on-farm employment generation by gender, and demand for formulated and non-formulated feeds.
format Ponencia
id CGSpace127061
institution CGIAR Consortium
language Inglés
publishDate 2022
publishDateRange 2022
publishDateSort 2022
publisher WorldFish
publisherStr WorldFish
record_format dspace
spelling CGSpace1270612025-01-09T16:58:44Z Harnessing Machine Learning to Estimate Aquaculture’s Contributions to The Economy of Southwest Bangladesh Belton, Ben Haque, Mohammad Mahfujul Ali, Hazrat Nejadhashemi, Amir Pouyan Hernández, Ricardo Khondker, Murshed-E-Jahan Ferriby, Hannah climate change food systems deltas The presentation detailed the use of machine learning techniques to extract information from freely available satellite images and estimate the area of waterbodies used for aquaculture in seven districts in southern Bangladesh, one of country’s most important aquaculture zones producing fish for domestic markets and crustaceans for export. The research combined machine learning derived estimates of aquaculture farm area per district with data from statistically representative farm surveys to estimate farm size, productivity, and total output, economic value of production, on-farm employment generation by gender, and demand for formulated and non-formulated feeds. 2022-12-01 2023-01-13T14:09:31Z 2023-01-13T14:09:31Z Presentation https://hdl.handle.net/10568/127061 en Open Access application/pdf WorldFish Belton, B., Haque, M.M., Ali, H., Nejadhashemi, A.P., Hernandez, R.A., Khondker, M. and Ferriby, H. 2022. Harnessing Machine Learning to Estimate Aquaculture’s Contributions to the Economy of Southwest Bangladesh. Presented at World Aquaculture Society, Singapore, 1 December 2022. Penang, Malaysia: WorldFish.
spellingShingle climate change
food systems
deltas
Belton, Ben
Haque, Mohammad Mahfujul
Ali, Hazrat
Nejadhashemi, Amir Pouyan
Hernández, Ricardo
Khondker, Murshed-E-Jahan
Ferriby, Hannah
Harnessing Machine Learning to Estimate Aquaculture’s Contributions to The Economy of Southwest Bangladesh
title Harnessing Machine Learning to Estimate Aquaculture’s Contributions to The Economy of Southwest Bangladesh
title_full Harnessing Machine Learning to Estimate Aquaculture’s Contributions to The Economy of Southwest Bangladesh
title_fullStr Harnessing Machine Learning to Estimate Aquaculture’s Contributions to The Economy of Southwest Bangladesh
title_full_unstemmed Harnessing Machine Learning to Estimate Aquaculture’s Contributions to The Economy of Southwest Bangladesh
title_short Harnessing Machine Learning to Estimate Aquaculture’s Contributions to The Economy of Southwest Bangladesh
title_sort harnessing machine learning to estimate aquaculture s contributions to the economy of southwest bangladesh
topic climate change
food systems
deltas
url https://hdl.handle.net/10568/127061
work_keys_str_mv AT beltonben harnessingmachinelearningtoestimateaquaculturescontributionstotheeconomyofsouthwestbangladesh
AT haquemohammadmahfujul harnessingmachinelearningtoestimateaquaculturescontributionstotheeconomyofsouthwestbangladesh
AT alihazrat harnessingmachinelearningtoestimateaquaculturescontributionstotheeconomyofsouthwestbangladesh
AT nejadhashemiamirpouyan harnessingmachinelearningtoestimateaquaculturescontributionstotheeconomyofsouthwestbangladesh
AT hernandezricardo harnessingmachinelearningtoestimateaquaculturescontributionstotheeconomyofsouthwestbangladesh
AT khondkermurshedejahan harnessingmachinelearningtoestimateaquaculturescontributionstotheeconomyofsouthwestbangladesh
AT ferribyhannah harnessingmachinelearningtoestimateaquaculturescontributionstotheeconomyofsouthwestbangladesh