Phenotyping Fusarium head blight through seed morphology characteristics using RGB imaging

Fusarium head blight (FHB) is an economically important disease affecting wheat and thus poses a major threat to wheat production. Several studies have evaluated the effectiveness of image analysis methods to predict FHB using disease-infected grains; however, few have looked at the final applicatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Leiva, Fernanda, Zakieh, Mustafa, Alamrani, Marwan, Dhakal, Rishap, Henriksson, Tina, Singh, Pawan Kumar, Chawade, Aakash
Formato: Journal Article
Lenguaje:Inglés
Publicado: Frontiers Media 2022
Materias:
Acceso en línea:https://hdl.handle.net/10568/126508
_version_ 1855518900378140672
author Leiva, Fernanda
Zakieh, Mustafa
Alamrani, Marwan
Dhakal, Rishap
Henriksson, Tina
Singh, Pawan Kumar
Chawade, Aakash
author_browse Alamrani, Marwan
Chawade, Aakash
Dhakal, Rishap
Henriksson, Tina
Leiva, Fernanda
Singh, Pawan Kumar
Zakieh, Mustafa
author_facet Leiva, Fernanda
Zakieh, Mustafa
Alamrani, Marwan
Dhakal, Rishap
Henriksson, Tina
Singh, Pawan Kumar
Chawade, Aakash
author_sort Leiva, Fernanda
collection Repository of Agricultural Research Outputs (CGSpace)
description Fusarium head blight (FHB) is an economically important disease affecting wheat and thus poses a major threat to wheat production. Several studies have evaluated the effectiveness of image analysis methods to predict FHB using disease-infected grains; however, few have looked at the final application, considering the relationship between cost and benefit, resolution, and accuracy. The conventional screening of FHB resistance of large-scale samples is still dependent on low-throughput visual inspections. This study aims to compare the performance of two cost–benefit seed image analysis methods, the free software “SmartGrain” and the fully automated commercially available instrument “Cgrain Value™” by assessing 16 seed morphological traits of winter wheat to predict FHB. The analysis was carried out on a seed set of FHB which was visually assessed as to the severity. The dataset is composed of 432 winter wheat genotypes that were greenhouse-inoculated. The predictions from each method, in addition to the predictions combined from the results of both methods, were compared with the disease visual scores. The results showed that Cgrain Value™ had a higher prediction accuracy of R2 = 0.52 compared with SmartGrain for which R2 = 0.30 for all morphological traits. However, the results combined from both methods showed the greatest prediction performance of R2 = 0.58. Additionally, a subpart of the morphological traits, namely, width, length, thickness, and color features, showed a higher correlation with the visual scores compared with the other traits. Overall, both methods were related to the visual scores. This study shows that these affordable imaging methods could be effective to predict FHB in seeds and enable us to distinguish minor differences in seed morphology, which could lead to a precise performance selection of disease-free seeds/grains.
format Journal Article
id CGSpace126508
institution CGIAR Consortium
language Inglés
publishDate 2022
publishDateRange 2022
publishDateSort 2022
publisher Frontiers Media
publisherStr Frontiers Media
record_format dspace
spelling CGSpace1265082025-12-08T10:29:22Z Phenotyping Fusarium head blight through seed morphology characteristics using RGB imaging Leiva, Fernanda Zakieh, Mustafa Alamrani, Marwan Dhakal, Rishap Henriksson, Tina Singh, Pawan Kumar Chawade, Aakash fusarium seed wheat Fusarium head blight (FHB) is an economically important disease affecting wheat and thus poses a major threat to wheat production. Several studies have evaluated the effectiveness of image analysis methods to predict FHB using disease-infected grains; however, few have looked at the final application, considering the relationship between cost and benefit, resolution, and accuracy. The conventional screening of FHB resistance of large-scale samples is still dependent on low-throughput visual inspections. This study aims to compare the performance of two cost–benefit seed image analysis methods, the free software “SmartGrain” and the fully automated commercially available instrument “Cgrain Value™” by assessing 16 seed morphological traits of winter wheat to predict FHB. The analysis was carried out on a seed set of FHB which was visually assessed as to the severity. The dataset is composed of 432 winter wheat genotypes that were greenhouse-inoculated. The predictions from each method, in addition to the predictions combined from the results of both methods, were compared with the disease visual scores. The results showed that Cgrain Value™ had a higher prediction accuracy of R2 = 0.52 compared with SmartGrain for which R2 = 0.30 for all morphological traits. However, the results combined from both methods showed the greatest prediction performance of R2 = 0.58. Additionally, a subpart of the morphological traits, namely, width, length, thickness, and color features, showed a higher correlation with the visual scores compared with the other traits. Overall, both methods were related to the visual scores. This study shows that these affordable imaging methods could be effective to predict FHB in seeds and enable us to distinguish minor differences in seed morphology, which could lead to a precise performance selection of disease-free seeds/grains. 2022-10-18 2023-01-03T14:32:39Z 2023-01-03T14:32:39Z Journal Article https://hdl.handle.net/10568/126508 en Open Access application/pdf Frontiers Media Leiva, F., Zakieh, M., Alamrani, M., Dhakal, R., Henriksson, T., Singh, P. K., & Chawade, A. (2022). Phenotyping Fusarium head blight through seed morphology characteristics using RGB imaging. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1010249
spellingShingle fusarium
seed
wheat
Leiva, Fernanda
Zakieh, Mustafa
Alamrani, Marwan
Dhakal, Rishap
Henriksson, Tina
Singh, Pawan Kumar
Chawade, Aakash
Phenotyping Fusarium head blight through seed morphology characteristics using RGB imaging
title Phenotyping Fusarium head blight through seed morphology characteristics using RGB imaging
title_full Phenotyping Fusarium head blight through seed morphology characteristics using RGB imaging
title_fullStr Phenotyping Fusarium head blight through seed morphology characteristics using RGB imaging
title_full_unstemmed Phenotyping Fusarium head blight through seed morphology characteristics using RGB imaging
title_short Phenotyping Fusarium head blight through seed morphology characteristics using RGB imaging
title_sort phenotyping fusarium head blight through seed morphology characteristics using rgb imaging
topic fusarium
seed
wheat
url https://hdl.handle.net/10568/126508
work_keys_str_mv AT leivafernanda phenotypingfusariumheadblightthroughseedmorphologycharacteristicsusingrgbimaging
AT zakiehmustafa phenotypingfusariumheadblightthroughseedmorphologycharacteristicsusingrgbimaging
AT alamranimarwan phenotypingfusariumheadblightthroughseedmorphologycharacteristicsusingrgbimaging
AT dhakalrishap phenotypingfusariumheadblightthroughseedmorphologycharacteristicsusingrgbimaging
AT henrikssontina phenotypingfusariumheadblightthroughseedmorphologycharacteristicsusingrgbimaging
AT singhpawankumar phenotypingfusariumheadblightthroughseedmorphologycharacteristicsusingrgbimaging
AT chawadeaakash phenotypingfusariumheadblightthroughseedmorphologycharacteristicsusingrgbimaging