Sparse kernel models provide optimization of training set design for genomic prediction in multiyear wheat breeding data

The success of genomic selection (GS) in breeding schemes relies on its ability to provide accurate predictions of unobserved lines at early stages. Multigeneration data provides opportunities to increase the training data size and thus, the likelihood of extracting useful information from ancestors...

Descripción completa

Detalles Bibliográficos
Autores principales: López Cruz, Marco, Dreisigacker, Susanne, Crespo-Herrera, Leonardo A., Bentley, Alison R., Singh, Ravi P., Poland, Jesse A., Shrestha, Sandesh, Huerta Espino, Julio, Velu, Govindan, Juliana, Philomin, Mondal, Suchismita, Pérez Rodriguez, Paulino, Crossa, José
Formato: Journal Article
Lenguaje:Inglés
Publicado: Wiley 2022
Materias:
Acceso en línea:https://hdl.handle.net/10568/126293

Ejemplares similares: Sparse kernel models provide optimization of training set design for genomic prediction in multiyear wheat breeding data