An unmanned aerial vehicle (UAV) technology for estimating leaf N content in rice crops, from multispectral imagery

Proof of concept delivered. Three machine learning methods based on multivariable linear regressions (MLR), support vector machines (SVM), and neural networks (NN), were applied and compared through the entire phonological cycle of the crop: vegetative (V), reproductive (R), and ripening (Ri).

Detalles Bibliográficos
Autor principal: CGIAR Research Program on Rice
Formato: Informe técnico
Lenguaje:Inglés
Publicado: 2020
Materias:
Acceso en línea:https://hdl.handle.net/10568/122306

Ejemplares similares: An unmanned aerial vehicle (UAV) technology for estimating leaf N content in rice crops, from multispectral imagery