Data-driven similar response units for agricultural technology targeting: An example from Ethiopia
Ethiopia has heterogeneous topographic, climatic and socio-ecological systems. Recommendations of agricultural inputs and management practices based on coarse domains such as agro-ecological zones (AEZ) may not lead to accurate targeting, mainly due to large intra-zone variations. The lack of well-t...
| Autores principales: | , , , , , , , , , , |
|---|---|
| Formato: | Journal Article |
| Lenguaje: | Inglés |
| Publicado: |
Cambridge University Press
2022
|
| Materias: | |
| Acceso en línea: | https://hdl.handle.net/10568/120934 |
Ejemplares similares: Data-driven similar response units for agricultural technology targeting: An example from Ethiopia
- A scalable scheme to implement data-driven agriculture for small-scale farmers
- A map of global peatland extent created using machine learning (Peat-ML)
- Reference soil groups map of Ethiopia based on legacy data and machine learning technique: EthioSoilGrids 1.0
- Characterizing and mapping cropping patterns in a complex agro-ecosystem: An iterative participatory mapping procedure using machine learning algorithms and MODIS vegetation indices
- Desafío de la extensión: convivencia de lo presencial y lo virtual
- Meeting the challenges in the water sector