Reference soil groups map of Ethiopia based on legacy data and machine learning technique: EthioSoilGrids 1.0

Abstract. Up-to-date digital soil resources information, and its comprehensive understanding, is crucial to support crop production and sustainable agricultural development. Generating such information through conventional approaches consumes time and resources, which is difficult for developing cou...

Descripción completa

Detalles Bibliográficos
Autores principales: Ali, Ashenafi, Erkossa, Teklu, Gudeta, Kiflu, Abera, Wuletawu, Mesfin, Ephrem, Mekete, Terefe, Haile, Mitiku, Haile, Wondwosen, Abegaz, Assefa, Tafesse, Demeke, Belay, Gebeyhu, Getahun, Mekonen, Beyene, Sheleme, Assen, Mohamed, Regassa, Alemayehu, Selassie, Yihenew G., Tadesse, Solomon, Abebe, Dawit, Walde, Yitbarek, Hussien, Nesru, Yirdaw, Abebe, Mera, Addisu, Admas, Tesema, Wakoya, Feyera, Legesse, Awgachew, Tessema, Nigat, Abebe, Ayele, Gebremariam, Simret, Aregaw, Yismaw, Abebaw, Bizuayehu, Bekele, Damtew, Zewdie, Eylachew, Schulz, Steffen, Tamene, Lulseged D., Elias, Eyasu
Formato: Preprint
Lenguaje:Inglés
Publicado: Copernicus GmbH 2022
Materias:
Acceso en línea:https://hdl.handle.net/10568/119860
_version_ 1855540866394882048
author Ali, Ashenafi
Erkossa, Teklu
Gudeta, Kiflu
Abera, Wuletawu
Mesfin, Ephrem
Mekete, Terefe
Haile, Mitiku
Haile, Wondwosen
Abegaz, Assefa
Tafesse, Demeke
Belay, Gebeyhu
Getahun, Mekonen
Beyene, Sheleme
Assen, Mohamed
Regassa, Alemayehu
Selassie, Yihenew G.
Tadesse, Solomon
Abebe, Dawit
Walde, Yitbarek
Hussien, Nesru
Yirdaw, Abebe
Mera, Addisu
Admas, Tesema
Wakoya, Feyera
Legesse, Awgachew
Tessema, Nigat
Abebe, Ayele
Gebremariam, Simret
Aregaw, Yismaw
Abebaw, Bizuayehu
Bekele, Damtew
Zewdie, Eylachew
Schulz, Steffen
Tamene, Lulseged D.
Elias, Eyasu
author_browse Abebaw, Bizuayehu
Abebe, Ayele
Abebe, Dawit
Abegaz, Assefa
Abera, Wuletawu
Admas, Tesema
Ali, Ashenafi
Aregaw, Yismaw
Assen, Mohamed
Bekele, Damtew
Belay, Gebeyhu
Beyene, Sheleme
Elias, Eyasu
Erkossa, Teklu
Gebremariam, Simret
Getahun, Mekonen
Gudeta, Kiflu
Haile, Mitiku
Haile, Wondwosen
Hussien, Nesru
Legesse, Awgachew
Mekete, Terefe
Mera, Addisu
Mesfin, Ephrem
Regassa, Alemayehu
Schulz, Steffen
Selassie, Yihenew G.
Tadesse, Solomon
Tafesse, Demeke
Tamene, Lulseged D.
Tessema, Nigat
Wakoya, Feyera
Walde, Yitbarek
Yirdaw, Abebe
Zewdie, Eylachew
author_facet Ali, Ashenafi
Erkossa, Teklu
Gudeta, Kiflu
Abera, Wuletawu
Mesfin, Ephrem
Mekete, Terefe
Haile, Mitiku
Haile, Wondwosen
Abegaz, Assefa
Tafesse, Demeke
Belay, Gebeyhu
Getahun, Mekonen
Beyene, Sheleme
Assen, Mohamed
Regassa, Alemayehu
Selassie, Yihenew G.
Tadesse, Solomon
Abebe, Dawit
Walde, Yitbarek
Hussien, Nesru
Yirdaw, Abebe
Mera, Addisu
Admas, Tesema
Wakoya, Feyera
Legesse, Awgachew
Tessema, Nigat
Abebe, Ayele
Gebremariam, Simret
Aregaw, Yismaw
Abebaw, Bizuayehu
Bekele, Damtew
Zewdie, Eylachew
Schulz, Steffen
Tamene, Lulseged D.
Elias, Eyasu
author_sort Ali, Ashenafi
collection Repository of Agricultural Research Outputs (CGSpace)
description Abstract. Up-to-date digital soil resources information, and its comprehensive understanding, is crucial to support crop production and sustainable agricultural development. Generating such information through conventional approaches consumes time and resources, which is difficult for developing countries. In Ethiopia, the soil resource map that was in use is qualitative, dated (since 1984), and small-scale (1:2 M) which limits its practical applicability. Yet, a large legacy soil profile data accumulated over time and the emerging machine learning modelling approaches can help in generating a high-quality quantitative digital soil map that can provide accurate soil information. Thus, a group of researchers formed a coalition of the willing for soil and agronomy data sharing and collated about 20,000 soil profile data and stored them in a central database. The data were cleaned and harmonized using the latest soil profile data template and prepared 14,681 profile data for modelling. Random Forest was used to develop a continuous quantitative digital map of 18 WRB reference soil groups at 250 m resolution by integrating environmental variables-covariates representing major Ethiopian soil-forming factors. The validated map will have tremendous significance in soil management and other land-based development planning, given its improved spatial nature and quantitative digital representation.
format Preprint
id CGSpace119860
institution CGIAR Consortium
language Inglés
publishDate 2022
publishDateRange 2022
publishDateSort 2022
publisher Copernicus GmbH
publisherStr Copernicus GmbH
record_format dspace
spelling CGSpace1198602025-12-08T09:54:28Z Reference soil groups map of Ethiopia based on legacy data and machine learning technique: EthioSoilGrids 1.0 Ali, Ashenafi Erkossa, Teklu Gudeta, Kiflu Abera, Wuletawu Mesfin, Ephrem Mekete, Terefe Haile, Mitiku Haile, Wondwosen Abegaz, Assefa Tafesse, Demeke Belay, Gebeyhu Getahun, Mekonen Beyene, Sheleme Assen, Mohamed Regassa, Alemayehu Selassie, Yihenew G. Tadesse, Solomon Abebe, Dawit Walde, Yitbarek Hussien, Nesru Yirdaw, Abebe Mera, Addisu Admas, Tesema Wakoya, Feyera Legesse, Awgachew Tessema, Nigat Abebe, Ayele Gebremariam, Simret Aregaw, Yismaw Abebaw, Bizuayehu Bekele, Damtew Zewdie, Eylachew Schulz, Steffen Tamene, Lulseged D. Elias, Eyasu soil profiles machine learning modelling digital records perfil del suelo aprendizaje electrónico modelización Abstract. Up-to-date digital soil resources information, and its comprehensive understanding, is crucial to support crop production and sustainable agricultural development. Generating such information through conventional approaches consumes time and resources, which is difficult for developing countries. In Ethiopia, the soil resource map that was in use is qualitative, dated (since 1984), and small-scale (1:2 M) which limits its practical applicability. Yet, a large legacy soil profile data accumulated over time and the emerging machine learning modelling approaches can help in generating a high-quality quantitative digital soil map that can provide accurate soil information. Thus, a group of researchers formed a coalition of the willing for soil and agronomy data sharing and collated about 20,000 soil profile data and stored them in a central database. The data were cleaned and harmonized using the latest soil profile data template and prepared 14,681 profile data for modelling. Random Forest was used to develop a continuous quantitative digital map of 18 WRB reference soil groups at 250 m resolution by integrating environmental variables-covariates representing major Ethiopian soil-forming factors. The validated map will have tremendous significance in soil management and other land-based development planning, given its improved spatial nature and quantitative digital representation. 2022-05-23 2022-06-16T09:51:00Z 2022-06-16T09:51:00Z Preprint https://hdl.handle.net/10568/119860 en Open Access text/plain Copernicus GmbH Ali, A.; Erkossa, T.; Gudeta, K.; Abera, W.; Mesfin, E.; Mekete, T.; Haile, M.; Haile, W.; Abegaz, A.; Tafesse, D.; Belay, G.; Getahun, M.; Beyene, S.; Assen, M.; Regassa, A.; Selassie, Y.G.; Tadesse, S.; Abebe, D.; Walde, Y.; Hussien, N.; Yirdaw, A.; Mera, A.; Admas, T.; Wakoya, F.; Legesse, A.; Tessema, N.; Abebe, A.; Gebremariam, S.; Aregaw, Y.; Abebaw, B.; Bekele, D.; Zewdie, E.; Schulz, S.; Tamene, L.; Elias, E. (2022) Reference soil groups map of Ethiopia based on legacy data and machine learning technique: EthioSoilGrids 1.0. 40 p. Soil (23 May 2022) ISSN: 2199-3971
spellingShingle soil profiles
machine learning
modelling
digital records
perfil del suelo
aprendizaje electrónico
modelización
Ali, Ashenafi
Erkossa, Teklu
Gudeta, Kiflu
Abera, Wuletawu
Mesfin, Ephrem
Mekete, Terefe
Haile, Mitiku
Haile, Wondwosen
Abegaz, Assefa
Tafesse, Demeke
Belay, Gebeyhu
Getahun, Mekonen
Beyene, Sheleme
Assen, Mohamed
Regassa, Alemayehu
Selassie, Yihenew G.
Tadesse, Solomon
Abebe, Dawit
Walde, Yitbarek
Hussien, Nesru
Yirdaw, Abebe
Mera, Addisu
Admas, Tesema
Wakoya, Feyera
Legesse, Awgachew
Tessema, Nigat
Abebe, Ayele
Gebremariam, Simret
Aregaw, Yismaw
Abebaw, Bizuayehu
Bekele, Damtew
Zewdie, Eylachew
Schulz, Steffen
Tamene, Lulseged D.
Elias, Eyasu
Reference soil groups map of Ethiopia based on legacy data and machine learning technique: EthioSoilGrids 1.0
title Reference soil groups map of Ethiopia based on legacy data and machine learning technique: EthioSoilGrids 1.0
title_full Reference soil groups map of Ethiopia based on legacy data and machine learning technique: EthioSoilGrids 1.0
title_fullStr Reference soil groups map of Ethiopia based on legacy data and machine learning technique: EthioSoilGrids 1.0
title_full_unstemmed Reference soil groups map of Ethiopia based on legacy data and machine learning technique: EthioSoilGrids 1.0
title_short Reference soil groups map of Ethiopia based on legacy data and machine learning technique: EthioSoilGrids 1.0
title_sort reference soil groups map of ethiopia based on legacy data and machine learning technique ethiosoilgrids 1 0
topic soil profiles
machine learning
modelling
digital records
perfil del suelo
aprendizaje electrónico
modelización
url https://hdl.handle.net/10568/119860
work_keys_str_mv AT aliashenafi referencesoilgroupsmapofethiopiabasedonlegacydataandmachinelearningtechniqueethiosoilgrids10
AT erkossateklu referencesoilgroupsmapofethiopiabasedonlegacydataandmachinelearningtechniqueethiosoilgrids10
AT gudetakiflu referencesoilgroupsmapofethiopiabasedonlegacydataandmachinelearningtechniqueethiosoilgrids10
AT aberawuletawu referencesoilgroupsmapofethiopiabasedonlegacydataandmachinelearningtechniqueethiosoilgrids10
AT mesfinephrem referencesoilgroupsmapofethiopiabasedonlegacydataandmachinelearningtechniqueethiosoilgrids10
AT meketeterefe referencesoilgroupsmapofethiopiabasedonlegacydataandmachinelearningtechniqueethiosoilgrids10
AT hailemitiku referencesoilgroupsmapofethiopiabasedonlegacydataandmachinelearningtechniqueethiosoilgrids10
AT hailewondwosen referencesoilgroupsmapofethiopiabasedonlegacydataandmachinelearningtechniqueethiosoilgrids10
AT abegazassefa referencesoilgroupsmapofethiopiabasedonlegacydataandmachinelearningtechniqueethiosoilgrids10
AT tafessedemeke referencesoilgroupsmapofethiopiabasedonlegacydataandmachinelearningtechniqueethiosoilgrids10
AT belaygebeyhu referencesoilgroupsmapofethiopiabasedonlegacydataandmachinelearningtechniqueethiosoilgrids10
AT getahunmekonen referencesoilgroupsmapofethiopiabasedonlegacydataandmachinelearningtechniqueethiosoilgrids10
AT beyenesheleme referencesoilgroupsmapofethiopiabasedonlegacydataandmachinelearningtechniqueethiosoilgrids10
AT assenmohamed referencesoilgroupsmapofethiopiabasedonlegacydataandmachinelearningtechniqueethiosoilgrids10
AT regassaalemayehu referencesoilgroupsmapofethiopiabasedonlegacydataandmachinelearningtechniqueethiosoilgrids10
AT selassieyihenewg referencesoilgroupsmapofethiopiabasedonlegacydataandmachinelearningtechniqueethiosoilgrids10
AT tadessesolomon referencesoilgroupsmapofethiopiabasedonlegacydataandmachinelearningtechniqueethiosoilgrids10
AT abebedawit referencesoilgroupsmapofethiopiabasedonlegacydataandmachinelearningtechniqueethiosoilgrids10
AT waldeyitbarek referencesoilgroupsmapofethiopiabasedonlegacydataandmachinelearningtechniqueethiosoilgrids10
AT hussiennesru referencesoilgroupsmapofethiopiabasedonlegacydataandmachinelearningtechniqueethiosoilgrids10
AT yirdawabebe referencesoilgroupsmapofethiopiabasedonlegacydataandmachinelearningtechniqueethiosoilgrids10
AT meraaddisu referencesoilgroupsmapofethiopiabasedonlegacydataandmachinelearningtechniqueethiosoilgrids10
AT admastesema referencesoilgroupsmapofethiopiabasedonlegacydataandmachinelearningtechniqueethiosoilgrids10
AT wakoyafeyera referencesoilgroupsmapofethiopiabasedonlegacydataandmachinelearningtechniqueethiosoilgrids10
AT legesseawgachew referencesoilgroupsmapofethiopiabasedonlegacydataandmachinelearningtechniqueethiosoilgrids10
AT tessemanigat referencesoilgroupsmapofethiopiabasedonlegacydataandmachinelearningtechniqueethiosoilgrids10
AT abebeayele referencesoilgroupsmapofethiopiabasedonlegacydataandmachinelearningtechniqueethiosoilgrids10
AT gebremariamsimret referencesoilgroupsmapofethiopiabasedonlegacydataandmachinelearningtechniqueethiosoilgrids10
AT aregawyismaw referencesoilgroupsmapofethiopiabasedonlegacydataandmachinelearningtechniqueethiosoilgrids10
AT abebawbizuayehu referencesoilgroupsmapofethiopiabasedonlegacydataandmachinelearningtechniqueethiosoilgrids10
AT bekeledamtew referencesoilgroupsmapofethiopiabasedonlegacydataandmachinelearningtechniqueethiosoilgrids10
AT zewdieeylachew referencesoilgroupsmapofethiopiabasedonlegacydataandmachinelearningtechniqueethiosoilgrids10
AT schulzsteffen referencesoilgroupsmapofethiopiabasedonlegacydataandmachinelearningtechniqueethiosoilgrids10
AT tamenelulsegedd referencesoilgroupsmapofethiopiabasedonlegacydataandmachinelearningtechniqueethiosoilgrids10
AT eliaseyasu referencesoilgroupsmapofethiopiabasedonlegacydataandmachinelearningtechniqueethiosoilgrids10